
An Empirical Study of i18n Collateral Changes and
Bugs in GUIs of Android apps

Camilo Escobar-Velásquez, Michael Osorio-Riaño, Juan Dominguez-Osorio, Maria Arevalo, Mario Linares-Vásquez
Systems and Computing Engineering, Universidad de los Andes, Bogotá, Colombia

{ca.escobar2434, ms.osorio, jm.dominguez, mi.arevalo10, m.linaresv}@uniandes.edu.co

Abstract—Mobile markets allow developers to easily distribute
mobile apps worldwide and collect complaints and feature
requests in the form of user reviews and star ratings. Therefore,
internationalization (i18n) of apps is a highly desired feature,
which is currently supported in mobile platforms by using
resources files with strings that can be internationalized manually.
This manual translation can be a time consuming and error-prone
task when the app is targeted for different languages and the
amount of strings to be internationalized is large. Moreover, the
lack of consideration of the impact of internationalized, strings
can drive to collateral (i.e., unexpected) changes and bugs in the
GUI layout of apps.

In this paper, we present an empirical study on how i18n can
impact the GUIs of Android apps. In particular, we investigated
the changes, bugs and bad practices related to GUIs when
strings of a given default language (i.e., English in this case) are
translated to 7 different languages. To this, we created a source-
codeless approach, ITDroid, for automatically (i) translating
strings, and (ii) detecting bad practices and collateral changes in-
troduced in the GUIs of Android apps after translation. ITDroid
was used on a set of 31 Android apps and their translated
versions. Then, we manually validated the i18n changes that
introduced bugs into the GUIs of the translated apps. Based
on these results, we present a taxonomy of i18n changes and
bugs found along in the apps as well as implications of our
findings for practitioners and researchers. Online appendix:
https://thesoftwaredesignlab.github.io/ITDroid/

Index Terms—Internationalization, Android, collateral
changes, bugs, bad practices

I. INTRODUCTION

Mobile apps are a type of software application that has no
comparative in terms of adoption in human daily activities,
nowadays. The distribution model provided by online app mar-
kets has pushed users and developers towards a new dynamic
in terms of release engineering practices, apps consumption in
mobile devices, and requirements elicitation [1]–[3]. Mobile
markets allow developers to easily distribute mobile apps
worldwide and collect complaints and feature request in the
form of user reviews and star ratings at an unprecedented rate.
Therefore, mobile app developers should be more aware of
existing practices for making their apps accessible worldwide,
which includes internationalizing the apps, but, without im-
pacting the quality as perceived by users, and without being a
“show-stopper” for the development process.

Acknowledgment. Escobar-Velásquez and Linares-Vásquez are partially
supported by a Google Latin American Research Award 2018-2020.

The term Internationalization (i18n) refers to mechanisms
for adapting software applications to different languages.
From the perspective of automated software engineering,
internationalization-related tasks can be summarized in (i)
detecting and translating strings that need to be internation-
alized, and (ii) testing that i18n efforts do not introduce bugs
in the internationalized apps. Current practices for interna-
tionalizing software applications consist mostly on extracting
typically hard-coded strings to resources files, and then, cre-
ating internationalized versions of the strings in the default
language; it means, there should be a resource file for each
language (included the default one), containing the texts that
are displayed in the GUI. Mobile development IDEs provide
wizard-based features for detecting hard-coded strings and
generating (manually) the internationalized versions, however,
there is no feature in the IDEs for automatically translating
the strings. Recent approaches proposed by Wang et al. [4]–[7]
automatically detect need-to-translate strings, and translate the
strings but in an off-line mode, i.e., the strings are translated
outside and not incorporated into the app.

On the other side, automated i18n testing of mobile apps
has not been widely explored. Automated testing of mobile
apps have focused on functional bugs [8]–[12], performance
issues [13], vulnerabilities [14], [15], among other type of
bugs. In spite of those efforts, in the case of i18n bugs in
Android apps, there is no previous study on this type of bugs
and there is no available approach for automatically detecting
the bugs on Android apps.

Previous efforts on detecting i18n issues has been done but
on the domain of web applications [16]–[18], which provide
interesting insights and learned lessons. However, transferring
the proposed approaches to the domain of Android apps
requires to consider the specifics of the Android program-
ming model. Therefore, in this paper we first describe a
novel approach (ITDroid) for automatically detecting i18n
changes in Android apps in a source-codeless fashion (i.e.,
without having access to the apps source code), and then, we
analyze different aspects of i18n changes detected in a set
of 31 Android apps and their automatically internationalized
versions to 7 different languages. ITDroid combines APK
static analysis, automated translation of strings, and dynamic
analysis techniques (i.e., GUI ripping and automated replay),
to identify violations of GUI constraints when simulating apps
execution with different languages. ITDroid also detects

https://thesoftwaredesignlab.github.io/ITDroid/

strings hard coded and declared in resource and code files that
are not internationalized. The proposed approach operates in
a source-codeless fashions, thus, it is agnostic of the native
language used for creating the app (i.e.,, Java and Kotlin)
because the analysis is done at the APK level.

After analyzing 31 Android apps and the internationalized
versions (which account for a total of 62 APK files) we found
that all of the studied apps have i18n bugs introduced by (i)
bad development practices such as hardcoded strings or non
existence of a strings.xml file for a certain language, or (ii)
i18n collateral changes. The collateral changes, bad practices,
and bugs detected in the analyzed are depicted in a taxonomy.
Beside the taxonomy, we discuss representative examples a set
of implications for practitioners and researchers.

II. SOFTWARE INTERNATIONALIZATION

Software applications contain textual information that is
displayed to users via command lines, GUI, exceptions, mes-
sages, logs, etc. When applications are expected to be de-
ployed/delivered in different languages (e.g., English, Spanish,
Chinese), internationalization (i18n) and localization (l10n)
mechanisms should be included in the apps, with the purpose
of displaying the textual information in the language of the
host device (e.g., a mobile device or a web browser running on
a laptop) without installing additional software. While i18n is
focused on adapting textual information to different languages
and regions, l10n focuses on the specific requirements of a
particular region. Note that in this paper we focus only on
i18n when using English as the default language of Android
apps, and seven target languages for the translation: (i) Italian,
(ii) French, (iii) Russian, (iv) Arabic, (v) Spanish, (vi) Hindi
and (vii) Portuguese.

A general and widely used mechanism for internationalizing
software applications, independently of the type of app,
consists on using textual files — one for each of the target
languages — with key-value pairs for the internationalized
strings. In those files, a key is the identifier for referencing a
string from the app code, and the value is the corresponding
literal that will be displayed for a host language. For example,
in the case of Android apps, an internationalized string
definition in English looks like this:

1 <string name="login_cancel_button">Cancel</string>

For Android apps, the internationalized strings are lo-
cated in XML files stored at the /res folder of an
app bundle. There should be a folder, for each lan-
guage, containing the corresponding strings.xml file,
e.g., /res/values-fr/string.xml for French (fr) and
/res/values-ja/string.xml for Japanese (ja). The
Android Studio IDE includes wizards for extracting hard-
coded strings to the i18n files, and for manually defining the
different translations. However, despite having native support
for i18n at the framework/API levels, when no automated
support is available for strings translation, this is an error prone

and potentially expensive task [19], [20]. Therefore, one way
to manually deal with strings internationalization, widely used
by open source projects, consist of delegating the translation
task to global contributors that commit their own language
files and translations.
A. Automated Support

Previous approaches have been proposed for automatically
detecting the strings that need to be internationalized in
software applications, and for automatically translating the
strings. For instance, Wang et al. [4]–[6] propose a string-taint-
analysis-based approach for automatically locating strings
literals that are displayed in the GUI of Java and web applica-
tions [21]. Concerning automated translation of strings to be
internationalized, Wang et al. [7] used RNN (Recurrent Neural
Network) encode-decoders to automatically translate text in
Android apps from English to the other five United Nations
official languages (i.e., Arabic, Chinese, French, Spanish and
Russian). Note that Wang et al. [7] extracted the strings
directly from the string.xml file of each analyzed app and
did not generate new versions of the apps with the translations
(i.e., the translations were done off-line).

Other approaches have focused on internationalizing source
code, but, from the perspective of transforming code to be
Unicode compatible. For example, Xia et al. [22] proposed an
approach for automatically transforming code, in a large legacy
commercial system written in C/C++, in order to support the
Unicode standard.
B. Internationalization Failures

Previous studies have shown that internationalization ef-
forts can introduce Internationalization Failures (IFs) in
web apps [16]–[18]. There are two types of IFs reported
by [17]: Layout Failures (a.k.a., Internationalization Presen-
tation Failures- IPFs [16]), and Configuration Failures. The
former are unintended modifications to GUI layouts, which are
introduced because text translations can have different lengths,
heights (when compared to the original text) and directions
as in the case of right-to-left languages. For instance, while
the word “car” in English has three characters, the translated
word in Russian has 10 characters. Examples of these bugs
are components overlapping, texts going beyond the container
margins, and components that disappear from users view.
On the other side, configuration failures are issues in the
configuration of an i18n related property in a website or a
web server [17].

A previous study on web applications, by Alaamer and
Halfond [17], showed that IPFs are common on websites
and they depend on specific languages. In terms of existing
approaches for detecting IPF failures, Alameer et al. [16], [17]
used layout graphs to detect presentation differences between
the GUI layout graph of an app using the original language
and the graph of an internationalized version. A layout graph
describes the location, alignment, and overflow relationships
that exist between components of a given GUI. An IPF is
detected when there are differences between the original graph
and the internationalized version. With the same purpose of

detecting general presentation failures (i.e., not only IPFs)
Mahajan and Halfond [23] used computer vision techniques
to detect differences between GUI screenshots.

While the previously mentioned papers focused on detecting
and locating the IPFs in the GUI, Mahajan et al. [18] automat-
ically repair IPFs in websites by using search-based techniques
that provide solutions as sets of HTML and CSS statements
that fix the IPFs. This approach was able to fix all the issues in
18 out of 23 websites. However, note that the aforementioned
approaches for detecting and fixing IPFs in web apps do not
support automated exploration of the apps under analysis, it
means, the research/user manually provides links to individual
web pages (original and internationalized ones); in addition,
the aforementioned approaches do not automatically translate
the original version of the app under analysis to the target
languages, which means that those approaches are highly
dependent on the availability of the internationalized versions
of the app.

C. Layout Testing of Mobile apps

It is worth noting that for the case of mobile apps, there
are few works aimed at automatically supporting apps’ in-
ternationalization. As previously mentioned, Wang et al. [7]
provide off-line translation using RNNs. Concerning tools
created by the platform designers (i.e., Google and Apple),
there is no tool or approach for automated translation of strings
or IPFs detection/repair. The only available official support
is for hard-coded strings detection and manual definition of
internationalized strings in both the Android Studio and the
iOS Xcode IDEs.

A common technique used by practitioners during
internationalization/localization testing is called “pseudo-
localization” which consists of replacing original strings with
dummy text or random strings that follow pseudo-languages,
i.e., pre-defined heuristics such as using strings with double
length or written from righ-to-left [24] For example, the iOS
XCode IDE allows for testing iOS apps with pseudo-languages
and right-to-left layouts. However, testing needs to be done
manually or with unit tests created by developers. Another
existing tool is LayoutTest by Linkedin [24] which allows for
writing unit tests that check layout changes in iOS apps; the
mock data used in the tests need to be manually defined by
the developer.

Summary. Current approaches for automated support of
internationalization have focused on five tasks [16], [17],
[22]: (i) detection/location of strings that need to be trans-
lated, (ii) extraction of hard-code strings to resource files,
(iii) translation of strings to target languages, (iv) automated
detection/location of IPFs, and (v) automated fixing of IPFs.
However support for internationalization tasks in Android
apps is limited to off-line translation, detection of non-
internationalized strings, and unit testing of layouts with mock
data or pseudo-languages. Nowadays, there is no comprehen-
sive approach, for web or Android apps, able to automatically
(i) detect strings to be internationalized, (ii) create internation-
alized versions of the app under analysis, (iii) explore the app

to build layout graphs of the apps, and (iv) detect i18n related
changes in the GUIs. In addition, to the best of our knowledge,
there is no empirical study aimed at reporting the amount and
types of i18n changes and bugs in Android apps.

III. DETECTING I18N COLLATERAL CHANGES IN
ANDROID APPS

With the purpose of providing developers and researchers
with an automatic way to detect i18n changes in Android apps,
in this section we describe the architecture and workflow of
our ITDroid approach. ITDroid aims at:

1) Detecting non-internationalized strings (in source code
and resource files),

2) Generating internationalized versions of an app under
analysis,

3) Exploring the original version of an APK to generate a
reference collection of GUI states (represented as a tree of
layout graphs) and a replayable scenario of the execution,

4) Replaying the exploration scenario while using the app
with different languages, and

5) Reporting internationalization (i18n) changes found on
the internationalized versions.

ITDroid was designed to work with Android Packages
files (APKs), which enables analysis when no source code is
available, i.e., ITDroid works on apps created with different
native languages (i.e., Java and Kotlin). Working with APK
files instead of source code, reduces time overload when
compiling source code to APK files.

Different than using mock-data or pseudo-languages, our
approach automatically translates non-internationalized strings
to a list L of targeted languages.

Fig. 1 depicts the ITDroid architecture and workflow.
Note that the whole workflow is automated. We combine
different techniques such as static analysis of APK files, auto-
mated GUI ripping and replay, and (i18n) changes detection.
We describe each one of the techniques and components as
follows.

Original
APK file

1) PREPROCESSING

4) DETECTION

2) TRANSLATION

3) RIPPING and REPLAY

DECODING

HCS
DETECTION

NIS
DETECTION

TRANSLATOR LANG. FILE
CREATOR

APK
CREATOR

Internationalized
APK file

RIPPER/
STATE

COLLECTOR

REPLAYER/
STATE

COLLECTOR

lang.

APK
state

state

SMALI code

lang. files
strings

SMALI code

execution
trace

Trees of layout graphs

ICCs
DETECTOR

I18N
CHANGES
REPORTER

strings

ICCs

strings

Resources

Fig. 1: ITDroid architecture and workflow

A. Preprocessing
In order to obtain a representation of the APK under

analysis, we rely on the SMALI representation that can be
extracted from APK files. Our choice for SMALI is because it
has been recognized as one of the top representations used for

static analysis of APKs [25], [26]. ITDroid uses the apktool
[27] library to extract the decoded resources and a SMALI
representation of the dex code.

By using static analysis over the processed APK, ITDroid
locates all the hardcoded strings. In SMALI, string literals are
declared via const-string instructions (see Snippet 1).
Therefore, ITDroid generates the AST of the SMALI rep-
resentation and by using a visitor pattern, it goes through
all nodes looking for instructions that match the desired
expression. After all hardcoded strings (HCS) are located,
those are reported, and grouped by method and class. It is
worth noticing that hardcoded strings are not translated.

Snippet 1: Hardcoded String Example
1 const-string v1, "mileage-export"

Additionally, ITDroid identifies strings in the resources
of the app that are not internationalized. ITDroid compares
the string.xml file of the default language (i.e., English)
with the existing files (if any) of each target language. It is
worth noting that there is a set of strings automatically added
and translated by the Android SDK, therefore, ITDroid
removes those strings from the analysis. The result is then
a list of tuples < lang, string id > that describes non-
internationalized strings (NIS), with lang being a target
language in L, and string id the id of an existing string in
the default language but not internationalized to lang.
B. Translation

After identifying the non-internationalized strings in the app
resources folder, ITDroid proceeds with the translation. By
using a strategy pattern, ITDroid delegates the translation to
an external engine through an interface. This design decision
guarantees that ITDroid is agnostic to the translation engine.
For our initial implementation, we consumed the IBM Watson
Translation service, since it has a free and easy to use API.

Before doing the translation, ITDroid preprocesses the
strings to replace tokens like %s, %d, which cause problems in
the translation process. Once the strings in NIS are translated,
the results are used to build corresponding string.xml files
for each of the target languages in L. The files are included
into the decoded original APK, and then repackaged into an
internationalized APK (AI). Note that the new version of the
app is ready to be installed and tested using any of the selected
languages.
C. Ripping & Replay

Our approach includes a regression testing-based approach
for automatically identifying Internationalization Collateral
Changes (ICCs) in an internationalized APK (AI) . An Interna-
tionalization Collateral Change (ICC) is a change introduced in
the GUI of a mobile app when the app is internationalized and
executed in a device (physical or emulator) that is configured
for a language different than the default app language. Note
that Alameer et al. [16], [17] use the terms layout failures
and internationalization presentation failures to describe pre-
sentation issues introduced in a GUI when internationalizing
an application. However, in this paper we introduce the term

Internationalization Collateral Changes (ICCs), because not all
the induced changes produce bugs in a GUI. Therefore, we
prefer to use collateral change instead of failure to describe
changes induced in GUIs when using internationalized strings.
ITDroid collects GUI states in both A and AI , assuring

that (i) the same scenarios are executed automatically in both
versions, (ii) the execution is independent of the existence
of automated tests, and (iii) there is no need of human-
collected replayable scenarios. Therefore, ITDroid automat-
ically explores the GUI of A on an Android emulator, by
following a DFS-based approach widely used in Android GUI
rippers [28]–[31]. Our approach uses a systematic exploration
algorithm that traverses an app GUI, extracting a snapshot
of the different UI states and processing those to identify the
elements that can be exercised in the current view. Since a view
can have several changes due to the execution of events on its
elements, ITDroid uses a state-based execution that stores
the characteristics of the current state of the view and generates
a set of unique states while exploring the app. Because of this,
ITDroid identifies the events that trigger new states during
the exploration. Consequently, ITDroid reports the sequence
of events that were generated during the app exploration.

Additionally, to avoid manually exploring the internation-
alized APK, our ripper implementation replays the sequence
of events, generated on the original APK, on emulators auto-
matically configured by ITDroid to use the target languages.
Therefore, the internationalized APK is explored seven times,
one time for each target language

Since the set of steps that produce a change of state
are already identified from the original exploration, when
replaying the exploration, our tool does not execute all the
intermediate events that did not trigger a new state; this fast
replay that avoid useless events, allows ITDroid to improve
the time required to explore an internationalized version of
the app. During the ripping, the GUI states are stored in a
tree structure, where each node represents a GUI state, and
the edges are transitions that lead to different GUI states.
Each node in the tree stores the state id, a screenshot of the
GUI, and the list of GUI components. It is worth noticing that
while replaying events, we ignore the text content of the GUI
elements, to avoid miss-identification of elements due to the
language change in the device.

To avoid reproducibility issues, we assure a cold-start sce-
nario, i.e., before a each execution (either ripping o replay) the
emulator is restarted, the app is always un-installed/installed
and its local data is deleted. Also, ITDroid does not generate
replayable steps that are coupled to components locations,
which can lead to missing steps; we instead rely on locating
the components via a composed id (xpath, and element id).

For identifying ICCs, ITDroid models the states by us-
ing the layout graph representation proposed by Alameer et
al. [16], [17]. A layout graph (TLG) describes the existing
relationships between all components of a given GUI, in terms
of location (i.e., up, down, right, left), alignment (i.e., top-,
bottom-, right-, left-aligned), and overlapping (i.e., contains,
contained, intersects).

Fig. 2 serves as an example for explaining layout graphs.
In the example (see Fig. 2a) there are 5 buttons and 1 layout
component: btnA is located at the center of the image and
for the purpose of this example, we are going to analyze the
relations between this button and the rest of the elements. btnA
has location relations: btnE is up, btnB is to the right, btnD
is to the left, and btnC is down. In terms of alignment, btnE
is left-aligned, btnB is top-aligned, btnD is bottom-aligned
and btnC is right-aligned. Each of these alignment relations is
shown using a different color. Finally, in terms of overlapping,
there is a containment relation with the Layout component.
As the reader can see in Fig. 2a there is also a relation between
btnD and Layout called intersection. Fig. 2b presents the
layout graph ([16], [17]) depicting the relations. Note that
the graph is bidirectional and the relations can be different
under each direction, except for the case of intersection.

Layout

btnD

btnE

btnA

btnC

btnB

(a) GUI components

Left, Top-Align

Up, Right-Align

Right, Bottom-Aligned

Down, Left-Align
Contained

btnA

Down, Right-Align

btnC

Up, Left-Align

btnE

Contains
Intersects

layout

Right, Top-AlignbtnB

Left, Bottom-Aligned

btnD

(b) Layout graph

Fig. 2: Example of a layout graph: (a) view of GUI compo-
nents distribution, and (b) corresponding layout graph.

D. Detection and Reporting
Once the app has been explored for each language in L,

the next step is to process the corresponding layout graphs.
Therefore, using the default language’ layout graph (TLGdf)
as a baseline, ITDroid goes through each language’s layout
graph (TLGlang, ∀lang ∈ L) looking for differences with the
baseline graph. ITDroid starts by trying to find a matching
node in TLGlang for each one in TLGdf . Once all the possible
nodes are paired, the next step is to recognize the relations that
have changed between the two graphs. The result of this step is
the set of relations added and lost for all pair of nodes in each
state. Those changes are then detected as Internationalization
Collateral Changes (ICCs).

Fig. 3 shows the English (a) and Russian (b) version of

a set of buttons from the a2dp.Vol app’ main activity. Each
image contains 4 Android components: 3 buttons and a linear
layout. In the English version (Fig. 3a) all the components are
bottom-aligned –taking into account buttons margin. However,
for the Russian version (Fig. 3b) only the first and third buttons
remain bottom-aligned. Therefore, from the point of view of
the left-most button in the Russian version, there are 2 relations
that were lost: bottom alignment with the second button and
with linear layout.

(a) English version (b) Russian version

Fig. 3: Example of an ICC

At the end of the process, ITDroid generates a report
listing (i) hard-coded strings, (ii) non-internationalized strings
declared in the default language but not traduced in the target
languages, and (iii) internationalization collateral changes.
To easily handle ICCs, ITDroid reports the changes by
identifying: (i) the exploration state id, (ii) the id of the
node, (iii) each node for which a relation was modified along
with the details of the modified relations, and (iv) screenshots
depicting the GUI state for both default and internationalized
languages.

IV. EMPIRICAL STUDY DESIGN

As of today, there is no empirical study analyzing i18n bugs
in Android apps. Therefore, we used ITDroid in an empirical
study aimed at analyzing different aspects of i18n changes in
Android apps. To this, we executed ITDroid on the APK
files of 31 open source Android apps having English as their
default language, with the purpose of answering the following
research questions (RQs):

• RQ1: What types of i18n collateral changes and bugs are
exhibited on GUIs of Android apps?

• RQ2: What i18n collateral changes induce i18n collat-
eral bugs on GUIs of Android apps?

• RQ3: What are the GUI components and languages more
prone to i18n collateral changes and bugs?

A. Context of the study
To select the dataset of apps for this study, we started

looking for Android apps used in studies aiming at evalu-
ating testing approaches: DroidMate [32], CrawlDroid [33],
MDroid+ [34], [35]). Thus, we created a dataset of 211 apps
including the APKs used in those studies, and an internal
dataset we built for previous studies. Afterwards, to evaluate
whether the apps were valid for our study, we followed these
inclusion/exclusion criteria:

• We discarded the apps that were not available at the
Google Play Store.

• Given the fact that we were going to execute the apps on
an API 27 Android Emulator, we removed apps that were
not compatible with the API 27. Note that our choice for

running the experiments on an emulator rather than on a
physical device is because ITDroid is tailored for work-
ing with emulators, for instance, ITDroid automatically
sets the emulator language via ADB commands.

• We included (i) apps with more than one activity, or (ii)
apps with only one activity but exhibiting more than one
GUI state

Having into account these criteria we end up with a total
of 31 APKs ready to be used with our experiments.

We used English as the default language, and for the target
languages we used L = {Spanish, Hindi, Arabian, Russian,
Portuguese, French, Italian}. These set of languages is based
on the list of languages with the largest number of speakers.
Chinese, Malay, and Bengali were not used in the study —
despite being in the list of top languages — because the IBM
Translation Service does not provide translations from English
to those three languages. With that list of languages, and for
each original APK, ITDroid generated an internationalized
APK supporting the 7 languages in L, i.e., the analysis was
done on 31 original APKs, and 31 automatically internation-
alized APKs.

B. Open coding

To answer the RQs, we executed ITDroid on the 31 orig-
inal APKs, which automatically generates internationalized
APKs, and then used the statistics and information provided
by the ITDroid report. The ITDroid results were vali-
dated and analyzed with an open coding inspired procedure.
The validation aimed at detecting false positives reported by
ITDroid, and identifying the ICCs inducing i18n collateral
bugs (ICBs) in the apps.

The i18n changes were manually analyzed by all the authors
with open coding sessions that were supported on a web tool
we created. For each ICC assigned to a tagger, the tool showed:
(i) the type of change; (ii) the GUI components involved in the
change; (iii) a side-to-side comparison of the GUI state (i.e.,
screnshoot) of the original APK and the same GUI state on a
internationalized version, while highlighting the components
involved in the ICC; and (iv) a set of input fields for selecting
whether the depicted case is a false positive or a i18n collateral
change, and whether the ICC is a i18n bug or not.

The tagging process consisted of two stages. First, the
complete set of ICCs where distributed between the five
authors by ensuring each ICC was assigned at least to two
taggers. This first stage required each tagger to select between
3 main categories to tag (i.e., false positive (FP), ICC or ICB).
After this first stage of tagging, we had 273 cases where the
taggers agree with all the tags, and 129 conflicts in which
there was a disagreement in at least one of the tags.

The second stage, consisted of solving the tagging conflicts.
For the conflicts resolution, the cases where distributed be-
tween 3 authors. For this process, the web app was modified
to show the tags provided by the original taggers; the identities
of the original taggers were not disclosed to avoid biasing the
conflicts solver.

C. Analysis method
To answer RQ1, we built a taxonomy of i18n changes and

bugs, by analyzing the results reported by ITDroid and the
open coding process. The ITDroid report includes hard-
coded strings, non-internationalized strings, i18n changes, and
screenshots of the changes. In addition to the taxonomy, we
provide in Section V qualitative examples of the i18n changes
and bugs.

To answer RQ2 we analyze and report, with representative
qualitative examples, the cases marked as i18n bugs during the
coding phase. In the case of RQ3, we used the frequencies
and statistics collected for RQ1 and RQ2, and report the
results grouped by (i) GUI component types involved in i18n
changes (e.g., button-label, label-image, layout-button), and
(ii) language where the i18n changes and bugs were detected.

Note that the frequencies in the taxonomy report the i18n
changes detected by ITDroid in the 7 targeted languages
(overall). It is also worth noting that because an i18n change
is a relationship between two GUI components GC1 and GC2,
there is a dual nature. In the direction of GC2 → GC1
the relation could be different than in GC1 → GC2. For
example, in the GC1 → GC2 case, the change could be a
miss-alignment, but in the case of GC2 → GC1 the change
could a position-related one. Thus, when reporting frequencies,
if the change is the same in both directions we counted it as
one instance, otherwise, there are two different i18n changes.

All the details of the apps, original and internationalized
APKs, the reports generated by ITDroid with the interna-
tionalization changes, and the ITDroid code are publicly
available within our online appendix [36].

V. EMPIRICAL STUDY RESULTS

In this section we report the answers for each one of the
research questions in our study. We present and discuss our
findings by using a taxonomy of changes and bugs we built
with the results reported by ITDroid and the open coding
phase. Fig. 4 presents the taxonomy in which we distinguish
i18n changes from i18n bugs. Concerning the later, there
are bugs introduced by developers because the lack of i18n
practices (e.g., hard-coded strings), and collateral bugs induced
by the i18n collateral changes. The discussion of the results
includes visual examples of the changes and the bugs exhibited
by the analyzed apps. In addition, we highlight with bold and
italic the learned lessons and implications for the developers
and researchers communities. All values presented in this
section do not include the false positive found during the open
coding process. In particular, we found 30 false positives out
of 402 ICCs reported by ITDroid.
A. RQ1: What types of i18n collateral changes and bugs are

exhibited on GUIs of Android apps?
We found that i18n collateral changes and i18n code bad

practices are more frequent than collateral bugs in the analyzed
apps. In the following we describe the results for each category
of changes, bad practices, and bugs listed in Fig. 4.

i18n Collateral Changes (ICC). Based on the layout
graphs proposed by Alameer et al. [16], [17], ITDroid

Bad Coding practices
(Apps: 31 - Freq: 21942)

Collateral Changes
(Apps: 19 - Freq: 333)

Added Alignment
Apps: 6 - Freq: 98

Hardcoded Strings
(Apps: 31 - Freq: 21744)

No String
Resource File

(Apps: 1 - Freq: 1)

Non existent Translated
String Resource File

(Apps: 29 - Freq: 197)

Lost Alignment
Apps: 2 - Freq: 16

Intersection
Apps: 2 - Freq: 6

Lost Position
Apps: 12 - Freq: 109

Added Position
Apps: 13 - Freq: 104

Collateral
(Apps: 5 - Freq: 77)

Overflowed component
due to internationalized

text expansion
(Apps: 2 - Freq: 29)

Lack of mirrored
layout for

right-to-left-languages
(Apps: 15 - Freq: 38)

Overlapped
components

(Apps: 3 - Freq: 8)

Bugs

Lost Component
(Apps: 1 - Freq: 2)

Text

Fig. 4: Taxonomy of i18n collateral changes and bugs ex-
hibited on the 31 analyzed Android apps. Each box in the
taxonomy reports the number of apps with the change/bug,
and the number of times (Freq:) the change/bug was detected.

found instances of 4 types of changes. The most frequent
ones are related to components position: lost position, added
position and intersection. It is worth noticing that the values of
i18n changes reported in the the taxonomy refer to individual
changes in the apps GUI. Therefore, one action such as
shifting an element to other line can have different individual
changes, e.g., a case of lost position (right or left), a case of
added position (below or above) and finally, a case of added
alignment (left aligned or right aligned).

Fig. 5 is a representative example of the lost position
category, in which we can see how the right relation between
the “close app” and “ask me again” buttons is lost when the
internationalized texts in Portuguese expand. We found this
type of change in 109 cases (12 apps). Fig. 5 also represents a
case of added position, because there is a change from right to
bottom between the “close app” and “ask me again” buttons.
We found added positions in 104 cases (13 apps).

Fig. 5: Example of added and lost relations in the
cge.geocaching app.

Besides lost and addition of positions, we found 6 cases
in which changing to a non-default language generated in-
tersections that did not exist in the original APKs. There
are two types of intersection: overlapping and breakage of
parent-imposed constraints. Overlapping happens because a
containment relation is introduced between two components
when the app is used in a non-default language. An example
of this behavior is shown in Fig. 6: in the English version,
the “Select Preset” label and the down-arrow icon are next
to each other, however, when language is changed to Arabic,
the constraints of the text are not well defined and the text
overlaps with the icon.

Internationalization Bugs > Found by GUI relations comparison > Position > Intersection > Overlapping

Fig. 6: Example of an intersection relation in the
com.adermark.forestpondfree app

The breakage of parent-imposed constraints type, groups
the cases where a containment relation is lost. Specifically,
an intersection relation replaces the lost one, generating a
behavior like the one presented in Fig. 7.

Internationalization Bugs > Found by GUI relations comparison > Position > Intersection > Breakage of Imposed Constrains by Parent

Fig. 7: Example of an overlapped component in the
org.ethack.orwall app

Concerning changes related to components alignment we
found 114 instances: 98 cases of added alignment and 16
cases of lost alignment. Fig. 8 presents an example of added
alignment between the second and third buttons (from left to
right), where after translating to Portuguese, the text content
of the third button expands and fills the height of its container.
This results in a new bottom-alignment with the second button.
However, in the English version the buttons were not aligned.

Internationalization Bugs > Found by GUI relations comparison > Alignment Related > Added Relation

Fig. 8: Example of an added alignment relation in the
com.android.logcat app.

Opposite to the previous case, the lost alignment category
gather all the cases where a relation is removed. For example,
Fig. 9 shows a case where most of the buttons lose its top-
alignment relation with the first button, when the app is
explored in Hindi.

Internationalization Bugs > Found by GUI relations comparison > Alignment Related > Lost Relation

Fig. 9: Example of a lost alignment relation in the
com.android.logcat app.

i18n Bad Coding Practices (IBCP). ITDroid found
21942 cases of bad coding practices in the 31 analyzed
apps. The bad practices are organized in three groups: hard-
code strings, non-existing string resources, and non-existent
internationalization file. The hard-coded string practice refers
to strings that are placed directly in the source code. From a
internationalization point-of-view, this is a bad practice done
by developers, since those strings do not change when the
device language is modified. The most common appearance
of this behavior is to set a value from Activities or Fragments
code into a widget. This bad practice is exhibited 21744 times
in the 31 analyzed apps.

The non-existent string resource bad practice occurs when
an app has no strings.xml file. This leads to the extreme

case where all the strings in the application are hard-coded,
hindering the creation of an internationalized version of the
app. In our study we identified only one app with this behavior:
com.example.android.musicplayer.

The lack of strings.xml file can be also extended to
the corresponding files for non-default languages. We called
this case as the non-existent internationalization file. When
considering the 7 target languages used in this study we found
that in the analyzed apps, in 29 apps least one of the languages
in the list is not internationalized.

The prevalence of these bad coding practices suggests
that developers do not use the utilities available at the
Android Studio IDE for detecting and extracting hard-coded
strings. ITDroid is an option for detecting these bad
practices, outside of the IDE and without the need of having
access to source code. However, if developers prefer tools
embedded in the IDE, we encourage them to use the existing
features, and customize detection rules for non-existent
string resources and non-existing internationalization files
(extending the Lint tool available with Android Studio).

i18n Collateral Bugs (ICB). We found 4 types of ICBs
induced by i18n collateral changes, which group a total of
39 bugs belonging to 5 apps. The most prevalent type of
ICB is overflowed component due to internationalized text
expansion (29 instances). This type of bug is visible in
GUIs because it breaks the original design when large texts
push the components to be out of their expected dimensions,
positions and alignments. For instance, Fig. 5 shows how in
the cgeo.geocaching app, when changing to Portuguese, the
horizontal arrangement of the dialog buttons is pushed to
be vertical because of internationalized text expansion in the
buttons. When looking into the details of the cgeo.geocaching
app’s layout we found that the bug is exhibited by an Android
AlertDialog. Therefore, developers must be aware that even
Android composite widgets are prone to i18n bugs.

We also found that using linear layouts instead of constraints
layout is a common error in Android apps. Junior developers
prefer linear layouts because are easier to use; constraint
layouts are more complex to handle when there is no deep
knowledge of the available constraints. In addition to being
performance friendly, constraint layouts can help develop-
ers to avoid issues when dimensions of GUI components
are modified dynamically. Therefore, developers should be
knowledgeable of the constraint types and be aware that
changes in text lengths can break the layout drastically, in
particular when changing the default language.

Other types of ICB, but less frequent, are lost component,
lack of mirrored layout for right-to-left-languages, and over-
lapped components. The former type relates to cases in which
a visible component, is pushed out of the display view because
a text component is re-dimensioned (see Fig. 10). This does
not seem to be a problem at first sight, however, this type
of issue could hinder the execution of automated tests that
expect certain components to be visible. The lack of mirrored
layout for right-to-left-languages is a very specific bug that

Fig. 10: Example of lost content in com.teleca.jamendo app.
Due to space limitations, this example contains a snippet of
the full screen size example that can be found in our online
appendix.

is produced when developers do not consider bidirectionality
in their layouts. Bidirectionality means that for languages that
read from right-to-left (RTL), UIs should be mirrored to ensure
understandability. One example of this bug is Fig. 11. To avoid
this type of bugs, developers should follow bidirectionality
guides that describe how to mirror layouts at the design
concept and implementation levels [37], [38]. Static tools
can be a solution here, by automatically analyzing and
implementing the bidirectionality and RTL guidelines.

Fig. 11: Example of a lack of mirrored layout for right-to-
left–language in the com.nloko.android.syncmypix app.

Finally, the overlapped components bug is mainly caused
by the lack of proper constraints between two elements. This
bug can happen between two aligned elements, as it can be
seen in Fig. 6, and between an element and its container (see
Fig. 12).

Fig. 12: Example of an overlapping element and its container
in com.evancharlton.mileage app when internationalized to
Russian. The red and blue squares show the overlapping
relation

In general, most of the reported ICBs are caused by
incorrect definition of constraints on components with text
and the lack of tools supporting automated detection and
fixing. The bugs induced by internationalized text expansions
can also be easily fixed by using the ellipsize attribute
of the GUI components. In addition, although, ITDroid
is a partial solution that helps developers to detect IBCPs
and ICCs, they have to manually go over the ICCs reported
by ITDroid to identify ICBs. Therefore, future work could

focus on extending the ITDroid approach for automat-
ically detecting the bugs by relying on automated image-
based comparisons or by statically detecting (i) constraints
incompatibilities and issues, and (ii) missing configurations
and resources for enabling bidirectionality.

Other potential impact of the IBCPs and ICBs described
here, but not investigated in our study, is related to the
behavior of screen readers when IBCPs and ICBs are exhib-
ited in internationalized apps explored by users with visual
disabilities. Although it is an aspect not deeply investigated
yet, an empirical study by Vendome et al. [39] reports that
internationalization of assistive content in Android apps is
a concern expressed by some developers at Stack Overflow.

B. RQ2: What i18n collateral changes induce i18n collateral
bugs on GUIs of Android apps?

Overflowed component due to internationalized text
expansion. This type of bug is generated in most of the cases
by position-related changes, since the element that is shifted
to a new line lose all its position relations with the elements
that were in the same line. An example of this behavior is
Fig. 5. Because the button expanded into the next line, the
position alignments between the “ask me again” and “close
app” buttons are lost, and instead a new below/down relation
is added.

Lost Component. For this type of bug, the 2 cases we found
are related to internationalized text expansions that push other
components out of the user view. In the layout graphs, this is
represented as a lost position of the components pushed out
of the view, since those components (after the change) are
not visible anymore on the UI. The example in Fig. 10, shows
how there is a button at the end of the English version, but, the
button is not visible in the French version. This is represented
in the LayoutGraph as an element that does not appear in the
graph of internationalized version.

Lack of mirrored layout for right-to-left-languages. This
type of bug is mainly represented as the lack of of alignment
and position changes, since layouts for RTL languages should
mirror the position of most of its elements. For example,
all right alignment and position relations should became left
alignment and position relations. Note that we found only 2
cases with ITDroid during the open coding of the ICCs.
However, such a small number of cases is explained because
the layout graph-based approach [16], [17] used by ITDroid
focuses on detecting changes between layout graphs. The lack
of mirrored layout for RTL languages is in fact a bug that
should be identified when no changes are detected (i.e., there
is no mirroring) in components such as [37]. Therefore, we
manually analyzed the screenshots collected by ITDroid
when the emulator was configured for Arabic. We found 15
apps suffer from this bug (see Fig. 11). In order to detect
this type of bug, for the specific case of RTL languages, the
layout graph-inspired detection should look for components
not changing positions.

Overlapped components are exhibited mainly by intersec-
tion and lost alignment relations. This bug considers all the

cases where one element overflows its container, for instance,
the existing alignments of right and left borders between
contained elements and its container are broken.

C. RQ3: What are the GUI components and languages more
prone to i18n collateral changes and bugs?

Fig. 13 presents the amount of ICC and ICB distributed
along the languages used with our study. Arabic is the lan-
guage with more ICCs accounting for a total of 151 collateral
changes, nonetheless, 39 ICCs were considered as ICBs during
the manual tagging phase. Most of the ICCs generated when
internationalizing the analyzed apps to Arabic, are explained
because the lack of awareness of the RTL nature of language,
when designing the layouts. As already mentioned in the
previous section, layouts for Arabic versions of apps should
adapt alignment features to achieve bidirectionality; never-
theless this might generate a conflict for developers since
it might require to create two different versions of the app,
however, since API 17, Android apps accept RTL orientation
by defining this behavior in the layout files (see [38]). For
example, developers might want to use the paddingStart
attribute instead of paddingLeft, which delegates the
orientation to the operating system [38].

Italian

Hindi

French

Spanish

Portuguese

Russian

Arabic

0 50 10
0

15
0

20
0

151 39

100 26

49 9

35 0

35 3

25 0

18 0

Fig. 13: Distribution of lCC and ICB in the analyzed lan-
guages. The values next to the bar are the amount of ICCs,
while the amount shown next to the bug icon is the amount
of ICBs.

Russian is the top-2 language involved in ICCs, with 101
cases reported by ITDroid. The ICCs generate 26 collateral
bugs distributed in Overflowed component due to Interna-
tionalized text expansion and Overlapped components (See
Fig. 12) As in most of the cases reported in this study, the
bugs are induced by text expansions that are not properly
controlled with layout constraints or by shortening texts
using an ellipsis (i.e., using the ellipsize attribute [40]).
Using English as the default language in Android apps, and
not conducting proper i18n testing, makes apps prone to
i18n collateral changes and bugs because English is among
the languages with smallest words [41].

Fig. 14 reports the distribution of ICC and ICB at the GUI
component level. TextView is the top component, with 125
ICCs but only 6 ICBs. A similar behavior can be found with
LinearLayout, where there are 79 ICCs but only 5 were

CheckBox
TableLayout

TableRow
RelativeLayout

ViewGroup
RadioGroup
ImageView

RadioButton
FrameLayout

Button
LinearLayout

TextView

0 20 40 60 80 10
0

12
0

14
0

Fig. 14: GUI components involved in the ICCs detected by
ITDroid.

tagged as ICBs. In contrast, Button the top-3 component
in terms of ICCs, is also the one with most ICFs: 22 of
the 73 ICCs where tagged as ICBs. Note that ICCs related
to Buttons are commonly found in custom Dialogs where
layout constraints are not properly defined.
D. ITDroid limitations
ITDroid relies on a ripper for automatically exploring the

UI (Section III-C). In particular, our implementation follows
a DFS strategy for exploring the app, which has been demon-
strated to have code coverage limitations [9]. Fig. 15 depicts
the distribution of method coverage achieved by the ITDroid
ripper with the 31 analyzed apps. On average, ITDroid
automatically executed 23% of source code methods in the
apps. Another limitation in ITDroid is that it only translates
the strings that are defined in resources files, i.e., hard-
code strings were not automatically translated by the current
implementation of ITDroid. Therefore, it is worth noticing
that the results reported in our study should be considered
as a lower bound of the i18n collateral changes (ICC) and
bugs (ICB). Future work will be focused on improving the
ITDroid code coverage and including hard-coded strings in
the translation process. Improving the ripping strategy, adding
a random exploration mode, or even using a tool like Sapienz
[12] are avenues for future work that should be investigated
to improve code coverage achieved by ITDroid.

●

5 10 15 20 25 30 35 40

Fig. 15: Method coverage achieved by ITDroid during the
automated exploration of the analyzed apps.

VI. THREATS TO VALIDITY

External validity. This type of threats are concerned to
whether the results can be generalized to other settings or
populations. In this study we used a sample of 31 Android
native open source apps, which is not representative of the
whole population of Android apps; therefore, we can not
generalize our results to the whole set of Android apps that

include hybrid and mobile web apps. Additionally, it is known
that some popular apps have mechanisms to avoid being
repackaged, this behavior might change the result of the tool
execution. Future work should be devoted to replicate the
study on a larger sample of apps; also, similar approaches
should be implemented for Android hybrid and mobile web
apps and other platforms such as iOS. In addition, although we
analyzed ICCs and ICBs for 7 languages from the top-spoken
languages list, we can not claim that our results generalize
to other languages with different characteristics, e.g., isolating
(Chinese) or agglutinating (German) languages.

Internal validity. Concern confounding factors in the in-
dependent variables that can affect the results (i.e., dependent
variables). The apps sample is a potential threat, because they
could belong to a specific category. However, we reduced
this threat by random sampling the apps from a publicly
available repository (F-Droid) that has been widely used by
other researchers; our sample is diverse in terms of size and
categories (see online appendix). Another potential threat is the
choice of target language as the independent variable for the
number of ICCs and ICBs, however, in our study we executed
the experiment on a set of 7 different languages to avoid any
bias introduced by the language choice. Finally, the choice
of a ripper that follows a DFS strategy is a potential threat
to internal validity, because despite of trying to explore as
many states as possible, rippers are known to have limitations.
Therefore, we recognize that it is possible that there are more
GUI states in the apps that were not reached by the ripper. In
that sense, our results are reported as a lower bound of the
number of ICCs and ICBs in the analyzed apps.

VII. CONCLUSIONS & FUTURE WORK

Although ITDroid was not designed with the purpose
of automatically internationalizing apps, since the translation
process is implemented with a strategy pattern, any user
could implement its own ITDroid that works with another
translation service. In our case we used the IBM Watson
engine, but any translation engine can be easily plugged.

Despite the existence of mechanisms for supporting mobile
apps internationalization, issues such as collateral changes, bad
practices and collateral bugs were found in the analyzed apps.
Therefore, existing practices should be promoted more in the
practitioners community and researchers should envision and
implement tools for automated detection of i18n bugs in the
case of issues induced by bidirectionality and text expansions.
In addition, existing approaches such as the usage of graph-
layouts must be revised to consider issues related to RTL
languages.

Concerning ITDroid capabilities, future work will be ded-
icated to improving the language translation coverage. Addi-
tionally, implementing mechanisms for automatically identify-
ing i18n bugs is an interesting avenue for research. Finally, the
automated app exploration could be improved by combining
different automated testing strategies, e.g., monkey testing,
model-based testing and ripping.

REFERENCES

[1] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness:
A threat to the success of android apps,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: Association for
Computing Machinery, 2013, pp. 477–487. [Online]. Available:
https://doi.org/10.1145/2491411.2491428

[2] G. Bavota, M. Linares-Vásquez, C. E. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of api change- and fault-
proneness on the user ratings of android apps,” IEEE Transactions on
Software Engineering, vol. 41, no. 4, pp. 384–407, 2015.

[3] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, and A. De Lucia, “User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps,” in 2015
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 291–300.

[4] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-to-
translate constant strings for software internationalization,” in 2009 IEEE
31st International Conference on Software Engineering, May 2009, pp.
353–363.

[5] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating
need-to-translate constant strings in web applications,” in Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE ’10. New York,
NY, USA: ACM, 2010, pp. 87–96. [Online]. Available: http:
//doi.acm.org/10.1145/1882291.1882306

[6] X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-
to-externalize constant strings for software internationalization with
generalized string-taint analysis,” IEEE Transactions on Software En-
gineering, vol. 39, no. 4, pp. 516–536, April 2013.

[7] X. Wang, C. Chen, and Z. Xing, “Domain-specific machine
translation with recurrent neural network for software localization,”
Empirical Software Engineering, Apr 2019. [Online]. Available:
https://doi.org/10.1007/s10664-019-09702-z

[8] M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, and D. Poshy-
vanyk, “How do developers test android applications?” in 2017 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME), Sep. 2017, pp. 613–622.

[9] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (e),” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ser. ASE ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 429–440. [Online]. Available:
https://doi.org/10.1109/ASE.2015.89

[10] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), April 2015, pp. 1–10.

[11] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented
evolutionary testing of android apps,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 599–609. [Online]. Available: http://doi.acm.org/10.1145/2635868.
2635896

[12] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016. New York, NY, USA: ACM, 2016, pp. 94–105. [Online].
Available: http://doi.acm.org/10.1145/2931037.2931054

[13] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 1013–1024. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568229

[14] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and quali-
tative comparison of program analysis techniques for security assessment
of android software,” IEEE Transactions on Software Engineering,
vol. 43, no. 6, pp. 492–530, June 2017.

[15] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 866–886, Sep. 2015.

[16] A. Alameer, S. Mahajan, and W. G. Halfond, “Detecting and localizing
internationalization presentation failures in web applications,” in 2016

IEEE International Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2016, pp. 202–212.

[17] A. Alameer and W. G. Halfond, “An empirical study of international-
ization failures in the web,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2016, pp. 88–98.

[18] S. Mahajan, A. Alameer, P. McMinn, and W. G. J. Halfond, “Automated
repair of internationalization presentation failures in web pages using
style similarity clustering and search-based techniques,” in 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST), April 2018, pp. 215–226.

[19] V. Dagiene and R. Laucius, “Internationalization of open source soft-
ware: framework and some issues,” in ITRE 2004. 2nd International
Conference Information Technology: Research and Education, June
2004, pp. 204–207.

[20] J. M. Hogan, C. Ho-Stuart, and B. Pham, “Key challenges
in software internationalisation,” in Proceedings of the Second
Workshop on Australasian Information Security, Data Mining and
Web Intelligence, and Software Internationalisation - Volume 32, ser.
ACSW Frontiers ’04. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2004, pp. 187–194. [Online]. Available:
http://dl.acm.org/citation.cfm?id=976440.976469

[21] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. New York, NY, USA: ACM, 2007,
pp. 32–41. [Online]. Available: http://doi.acm.org/10.1145/1250734.
1250739

[22] X. Xia, D. Lo, F. Zhu, X. Wang, and B. Zhou, “Software interna-
tionalization and localization: An industrial experience,” in 2013 18th
International Conference on Engineering of Complex Computer Systems,
July 2013, pp. 222–231.

[23] S. Mahajan and W. G. J. Halfond, “Detection and localization of html
presentation failures using computer vision-based techniques,” in 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation (ICST), April 2015, pp. 1–10.

[24] Apple, “Testing your internationalized app. https://developer.apple.com/
library/archive/documentation/MacOSX/Conceptual/BPInternational/
TestingYourInternationalApp/TestingYourInternationalApp.html.”

[25] Y. Arnatovich, H. B. K. Tan, S. Ding, K. Liu, and L. K. Shar,
“Empirical Comparison of Intermediate Representations for Android
Applications,” in Proceedings of the 26th International Conference
on Software Engineering and Knowledge Engineering. Knowledge
Systems Institute Graduate School, 2014, pp. 205–210.

[26] Y. L. Arnatovich, L. Wang, N. M. Ngo, and C. Soh, “A comparison
of android reverse engineering tools via program behaviors validation
based on intermediate languages transformation,” IEEE Access, vol. 6,
pp. 12 382–12 394, 2018.

[27] “Apktool. https://code.google.com/p/android-apktool/.”
[28] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[29] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE Software, vol. 32, no. 5, pp. 53–59, Sep. 2015.

[30] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
android application crashes,” in 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), April 2016, pp.
33–44.

[31] S. Liñán, L. Bello-Jiménez, M. Arévalo, and M. Linares-Vásquez,
“Automated extraction of augmented models for android apps,” in 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), Sep. 2018, pp. 549–553.

[32] K. Jamrozik and A. Zeller, “Droidmate: A robust and extensible test
generator for android,” in 2016 IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft), May 2016,
pp. 293–294.

[33] Y. Cao, G. Wu, W. Chen, and J. Wei, “Crawldroid: Effective
model-based gui testing of android apps,” in Proceedings of the Tenth
Asia-Pacific Symposium on Internetware, ser. Internetware ’18. New

https://doi.org/10.1145/2491411.2491428
http://doi.acm.org/10.1145/1882291.1882306
http://doi.acm.org/10.1145/1882291.1882306
https://doi.org/10.1007/s10664-019-09702-z
https://doi.org/10.1109/ASE.2015.89
http://doi.acm.org/10.1145/2635868.2635896
http://doi.acm.org/10.1145/2635868.2635896
http://doi.acm.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2568225.2568229
http://dl.acm.org/citation.cfm?id=976440.976469
http://doi.acm.org/10.1145/1250734.1250739
http://doi.acm.org/10.1145/1250734.1250739
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/TestingYourInternationalApp/TestingYourInternationalApp.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/TestingYourInternationalApp/TestingYourInternationalApp.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPInternational/TestingYourInternationalApp/TestingYourInternationalApp.html
https://code.google.com/p/android-apktool/
http://doi.acm.org/10.1145/2351676.2351717

York, NY, USA: ACM, 2018, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/3275219.3275238

[34] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,
C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk, “Enabling
mutation testing for android apps,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, pp.
233–244. [Online]. Available: https://doi.org/10.1145/3106237.3106275

[35] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. L. Vásquez, G. Bavota,
C. Vendome, M. D. Penta, and D. Poshyvanyk, “Mdroid+: A mutation
testing framework for android,” CoRR, vol. abs/1802.04749, 2018.
[Online]. Available: http://arxiv.org/abs/1802.04749

[36] C. Escobar-Velásquez, M. Osorio-Riaño, J. Dominguez-Osorio,
M. Arevalo, and M. Linares-Vásquez, “Itdroid: Internationalization of
android apps. https://thesoftwaredesignlab.github.io/ITDroid/.”

[37] Google. Bidirectionality. https://bit.ly/3c61pyd.
[38] ——. Support layout mirroring. https://bit.ly/2yDkx8T.
[39] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez, “Can

everyone use my app? an empirical study on accessibility in android
apps,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 41–52.

[40] Google. android:ellipsize. https://bit.ly/2XEmwSN.
[41] R. Smith, “Distinct word length frequencies: distributions and symbol

entropies,” Glottometrics, vol. 23, pp. 7–22, 2012.

http://doi.acm.org/10.1145/3275219.3275238
https://doi.org/10.1145/3106237.3106275
http://arxiv.org/abs/1802.04749
https://thesoftwaredesignlab.github.io/ITDroid/
https://bit.ly/3c61pyd
https://bit.ly/2yDkx8T
https://bit.ly/2XEmwSN

