Kraken 2.0: A platform-agnostic and cross-device
interaction testing tool

William Ravelo-Méndez, Camilo Escobar-Veldsquez', Mario Linares-Vasquez

1

Universidad de los Andes, Bogotd, Colombia
{wr.ravelo, ca.escobar2434, m.linaresv} @uniandes.edu.co

Abstract—Mobile devices and apps have a primordial role
in daily life, and both have supported daily activities that
involve humans interaction. Nevertheless, this interaction can
occur between users in different platforms (e.g., web and mobile)
and devices. Because of this, developers are required to test
combinations of heterogeneous interactions to ensure a correct
behavior of multi-device and multi-platform apps. Unfortunately,
to the best of our knowledge, there is no existing open source
tool that enables testing for those cases. In this paper, we present
an improved version of our tool KrakenMobile, an open source
tool that enables the execution of interactive End-2-End tests
between Android devices. This new version, Kraken 2.0, has new
capabilities such as execution of platform-agnostic interactive
End-2-End tests (e.g., web and mobile), and has been migrated
from Ruby to NodeJS to improve its usability. Kraken2.0 is
publicly available on GitHub (https://bit.ly/30KPFcv). Videos:
https://bit.ly/3fifRXa

Index Terms—Signaling; Automated Testing;
Testing; Cross-application Testing

Cross-device

I. INTRODUCTION

Interaction with devices that have computing capabilities
has become part of daily life tasks; it includes the usage of
applications that are executed on desktops and laptops as well
as mobile devices such as phones and tablets. Along with this
plethora of available devices, users also have different options
concerning the platforms used for executing and distributing
applications, e.g., web and mobile versions of the same app.

The availability of different app execution environment,
have exerted a pressure over developers since users expect
high quality interactions between their different devices when
using an app. Additionally, developers must ensure the correct
behavior of apps in scenarios where users interact on different
platforms. An example of this are social media apps, that
allow users to post content at web browsers and interact with
it from a mobile device, or in the other way around (i.e.,
mobile then web). Therefore, developers and practitioners need
to test not only application scenarios executed on a specific
platform but also interaction between users from different
platforms or devices, and interactions of the same user but
on different platforms. However, while testing of web and
mobile applications are research fields that have proposed a
plethora of approaches and tools, no current publicly available
tool allows for creating testing scenarios that are executed on
different platforms in an interactive way; automated testing

IEscobar-Veldsquez and Linares-Vdsquez were partially supported by a
Google Latin American Research Award 2018-2021.

of apps that provide cross-platform interactions is not a well
explored field yet.

An example of this behavior can be an email communication
between two people; at the beginning of the interaction both
of them are using their browser to exchange emails, and at
some point one person needs to change into the email android
app, so she writes back from her cellphone. After answering a
couple of the emails, the user that was still using the web
browser decides to continue later on the mobile app, but
she decides first to write a draft of its last email so he can
finish it from its cellphone. At this point, these interactions
have required different versions of an app to be capable of
interact between them. Additionally, it has depicted not only
interaction between different users, but also the interaction
of the different environments of the same app . This type of
interactions are common between people, but in order to test
them, nowadays, practitioners and developers need to mock the
interaction since there is no available approach that supports
multi platform/device testing.

In this paper we present Kraken v2.0, an open source
automated End-2-End (E2E) testing tool for defining and
executing scenarios that involve inter-communication between
two or more browsers or mobile devices. Kraken v2.0 is
an enhanced version of Kraken v1.0 [1]], which (i) includes
fixes to issues, (ii) improves user experience, and (iii) has
new features to support web-mobile interaction and fuzzing.
In order to show Kraken v2.0 capabilities, we used the tool
with 10 combinations of web and mobile apps, in which we
created and executed cross-device E2E test scenarios. Kraken
v2.0 is publicly available on GitHub (https://bit.ly/30KPFcv)
and as a npm package: kraken—node.

II. RELATED WORK

End-to-End testing (E2E) is defined as a technique to
validate software quality at the system and acceptance levels
by executing scenarios that combine several use cases. This
implies that this testing technique does not restrict the test
execution to a specific functionality and is more focused
on complex test cases. For example, in an application for
communication, an E2E scenario could include the following:
a user must login, then she retrieves the list of contacts, opens
a chat, and finally sends a message to reach a friend.

Several approaches and tools have been proposed for sup-
porting E2E testing of web and mobile applications, but
without enabling multi platform interaction. An example of
the existing tools is Appium [2], that allows writing tests

https://thesoftwaredesignlab.github.io/Kraken/
https://www.youtube.com/watch?v=gf95lafrD8M
https://thesoftwaredesignlab.github.io/Kraken/

for web or mobile apps, by using specialized frameworks
that transform Selenium [3] commands into web and mo-
bile specific commands. This enables E2E testing for both
platforms. Nevertheless, it does not provide support for the
interaction across different devices and platforms. Another
existing approach is BrowserStack [4] that offers the execution
of Selenium [3] tests in parallel in a user-defined grid of
browsers. BrowserStack also supports the execution in parallel
of Android app tests written using Appium [2]] or Espresso
[5]]. This tool allows for writing tests that are device-agnostic,
however, it does not enable communication between platforms
to complete the interaction circle for a multi-platform app.

In the case of mobile apps, there are tools such as Cal-
abash [6], UIAutomator [7]], and Espresso [5]. These tools en-
able E2E for within Android apps, but all present downsides to
solve the platform-agnostic environment presented previously.
For example, UIAutomator is capable of performing tests that
involve several apps within the same device. Nevertheless, the
main app is treated as a blackbox, limiting the processing
of the generated result. However, none of the mentioned
approaches enables the interaction between android devices.

One might think that this interaction problem can be solved
by using existing communication protocols such as Bluetooth,
Server Sockets or even NFC. Nevertheless, these approaches
introduce new limitations such as no support for offline-
mode scenarios for internet-based protocols, as well as low
consistency due to specific implementation of those protocols
between devices and platforms.

To the best of our knowledge the only approach that enables
interaction between devices is Octopus [8], a private solution
created by the Uber Engineering team. Octopus, generates a
communication channel between mobile devices by creating
a message based interaction that are stored and handle by a
orchestrator device. Despite Octopus proposes a solution to
the inter-communication testing problem, it is not available
for users outside of Uber, and works only for mobile apps.

III. THE KRakEN v2.0 TOOL

In this section we describe the main changes that Kraken
undergo when going from its v1.0 to v2.0. The current version
(2.0) can be considered as a new tool since it was migrated
from ruby to typescript, leading to a set of changes such as the
replacement of base test automation library, enhancement of
the tool usage by easing its installation and operation, and
extension of available features to provide the users with a
more robust testing tool. However, Kraken v2.0 maintains
the original goal of the tool, enabling cross-device interaction-
based testing of apps. After going through a robust experimen-
tation with Kraken v1.0 we identified the need to generate a
new version to mitigate some limitations: First, because Ruby
relies on UNIX tools, Kraken v1.0 was particularly difficult
to configure and use on Windows OS. Second, Kraken
v1.0 only allowed inter-communication between Android de-
vices. Third, Calabash [6]] stopped receiving support from
the industry, leading to its deprecation since Android Oreo,
which endangered also the compatibility of Kraken v1.0.

Table I: Capabilities comparison for the different tools

| Feature | Krakenl.0 | Kraken2.0 |
Parallel Execution v v
Signaling v v
Mobile device support v v
Web Browser support v
Cross-platform testing v
Generate random events over v v
full- and part-of-screen
Kraken monkey v v
DataPool definition v v
Random Data generation v
Deployment to cloud (CI/CD) v
Extract snapshot of device v
Report generation v v
Test specification protocols Gherkin Gherkin, TS, JS
Step definition language Ruby TS, JS

Fourth, developers were interested in having more options
for scenarios specification. To solve these issues we built the
new version on top of WebdriverIO [9] and Appium [?2], and
combine them with the specification-by-example testing and
signaling proposed by Kraken v1.0 and Octopus [8]. Table [I|
presents the differences between the two versions of the tool.
Kraken v2.0 includes additional capabilities such as: (i)
tests execution with mobile and web interaction; (ii) new
languages available for the specification of tests and steps; (iii)
deployment in the cloud for CI/CD pipelines; (iv) on-demand
extraction of UI snapshots of an android application at a given
moment; (v) random data generation.

Fig. presents the architecture of Kraken v2.0. It
consists of several modules aimed at launching required de-
vices/browsers, creating artifacts for each device/browser, sup-
porting/orchestrating the signaling protocol, executing steps
and generating reports. Components that support the new
features depicted in Table [I| are highlighted by using a red
border.

Test]
File

obile.json

APKs
5

Command
Line Interface

O \—> APK Analyzer
Test) ()
Files 3 3 APK

--

Kraken Execution Engine
Runner Test Scenario
Engine Queue
Reporter GUI Automation 3"
Engine % Framework % : Thread F’ool%
L.-> Faker Engine
A,

Signal Engin#

properties json

Static Analyzer

i

vy

Directory
Manager

;

Fig. 1: The Kraken v2.0 architecture and workflow.

A. Test Files and Static Analyzer

Originally, Kraken v1.0 was built using Calabash [6] as
framework for the test definition and execution. Because of
this, the tests were required to be defined following a BDT-
style specification. Additionally, in order to define custom test
steps, the user must write them using ruby. As result of the
migration to Appium, Kraken v2.0 now allows users to
additionally define tests using “native” typescript files. An
example of a test written using typescript is presented in Snip-
pet[I] With this new capability, the Static Analyzer component
was also modified to be capable to check the compliance of the
test files with the syntax provided by Appium and Kraken
v2.0. It is worth noticing that Appium also supports BDT-
style specifications, providing the users with backward com-
patibility of the existent test scripts created for Kraken vIi.0.

Snippet 1: Kraken 2.0 scenario created with Typescript

1 let button = await client.$(‘android=new UiSelector () .resourceld
("es.usc.citius.servando.calendula:id/mi_button_skip") ‘)

2 await button.click();//

3

4 let burgerMenu = await client.$(’//android.widget.ImageButton [
@content-desc="Open"]’);

5 await burgerMenu.click();//

6

7 let settings = await client.$(‘android=new UiSelector ().

resourceld("es.usc.citius.servando.calendula:id/textView3
"y
8 await settings.click();//

10 let back = await client.$(’//android.widget.ImageButton[@content
-desc="Navigate up"]’)

11 await back.click();//

=

. Cross-platform Interaction-based Multi-device testing

As part of the migration of the tool, Kraken v2.0
now supports the definition and execution of tests over web
browsers, since Kraken v1.0 already performed signaling
between devices, we extrapolated the signaling process to
communicate two or more test execution processes regard-
less of the selected platforms. This was possible due to the
capabilities provided by Appium, since the test definitions
are platform-agnostic, and by using an internal framework
Kraken v2.0 translates the Selenium Webdriver commands
into UIAutomator commands in the case of Android. Addition-
ally, when it is used, Appium deploys an HTTP server that
exposes a REST API that orchestrates the event transmission
to the different devices and browsers.

C. Random Data Generation

In addition to the previously mentioned changes, Kraken
v2.0 allows for random data generation by using the Faker]S
[10] library. This impacts the previous (4) Runner Engine,
because when this mode is used within the test definition, a
new task is created towards the (8.5) Faker Engine that is
in charge of handling the library. This component generates
the random data defined by the user and works as cache for
the requested values in case a user decides to use them several
times within the same test scenario. More detailed information
regarding how to use this mode is presented in the following
section.

IV. KRAKEN V2.0 IN ACTION
A. Console Interface

User interaction with Kraken v2.0 is done via console
commands. To start using Kraken v2.0 itis only necessary
to install the NPM package via the command npm install

kraken-node; afterwards, users can (i) check if all prereq-
uisites are fullfiled on the host machine, (ii) generate a test
folder skeleton, and (iii) run the tests. Before running Kraken
v2.0 and depending on the type of devices that are going to
be used, Kraken v2.0 will require different prerequisites
that are specified with the kraken-node doctor command;
in addition, this command will display if the prerequisites are
correctly configured as shown in Snippet [2}

Snippet 2: Kraken prerequisites

1 Checking dependencies...

2 Android SDK [Installed] (Required only for mobile testing -
ANDROID_HOME)
3 Android AAPT [Installed] (Required only for Kraken’s info

command — ANDROID_HOME/build-tools

4 Appium [Installed] (Required only for mobile testing)
5 Java [Installed] (JAVA_HOME)
6 Done.

After setting up the testing environment the first step to use
Kraken v2.0 is to generate a base project containing:

o A .feature test file (similar to the one in Snippet

o A .json file where the information of the APK under test
will be specified

« A web subfolder containing a javascript file for the step
definition

e A mobile subfolder with files required for Kraken
v2.0 execution

To do this, the user should call the kraken-node gen
command.

Snippet 3: Example test file

Feature: Example feature

Quserl Gweb

Scenario: As a first user I say hi to a second user
Given I navigate to page "https://www.google.com"
Then I send a signal to user 2 containing "hi"

@Guser2 @mobile

Scenario: As a second user I wait for user 1 to say hi
Given I wait for a signal containing "hi"

Then I wait

TS 0v®wauou s v —

A test file should contain scenarios definition following a
Gherkin+Kraken v2.0 syntax. For example, the feature in
Snippet [3| contains two scenarios, one per each device involved
in the test. As it can be seen in lines 3 and 8 of Snippet 3]
each scenario is linked to a specific user (i.e., a device). The
user tag follows a naming pattern: Guser (\d+). Also, each
scenario can be executed on a different type of device such as
a web browser or an Android device; to specify what type of
device a scenario requires, the user should add the @web or
@mobile tag.

Before executing the test and due to the usage of Appium as
part of the architecture, Kraken v2.0 requires the launcher
activity name and package name of the APKs under test. This
information must be specified in the mobile.json (Snippet [)
file at the root directory.

Snippet 4: mobile.json file

"singular",

"<APK_PATH>",

"<APK_PACKAGE>",
"<APK_LAUNCH_ACTIVITY>"

"type":
"apk_path":
"apk_package":
"apk_launch_activity":

U R W —

In the case of specifying different APKs for each user then
the tester should modify the mobile.json file to include the
APK information of each user.

Snippet 5: mobile.json file for multiple APKs

1 {

2 "type": "multiple",

3 "Quserl": {

4 "apk_path": "<APK_PATH>",

5 "apk_package": "<APK_PACKAGE>"

6 "apk_launch_activity": "<APK_LAUNCH_ACTIVITY>"
7 by

8 "@user2": {

9 "apk_path": "<APK_PATH>",

10 "apk_package": "<APK_PACKAGE>"

11 "apk_launch_activity": "<APK_LAUNCH_ACTIVITY>"
12 }

13 }

When testing applications that are external to the organiza-
tion or that the source code is not publicly available, it may
happen that the APKs launcher activity name is not known
for the tester, that is why Kraken v2.0 offers the apk-
info command that given an APK file path will retrieve this
information by using the Android debug bridge (ADB). To
run this command the tester should execute kraken-node

apk-file <APK_PATH>, and Kraken v2.0 will display
information such as the one on Snippet [0]

Snippet 6: APK info retrieved by the kraken-node
apk—-file command

1 Launch activity: es.usc.citius.servando.calendula.activities.
StartActivity
2 Package: es.usc.citius.servando.calendula

Once the user has accessed to this information, she must up-
date the .feature file provided by Kraken v2.0, to correctly
configure the test execution. It is worth remembering that
Kraken v2.0 uses the Gherkin + Kraken v2.0 syntax,
thus, the tester can create new steps and use already defined
Appium and WebdriverIO helper functions. The Kraken
v2.0 specific steps are:

1) Send signal: Kraken v2.0 provides a step that sends
a signal to a device. This step has two parameters: the user
(i.e., tag) that will receive the signal and the content of the
signal. The structure of this step is:

Snippet 7: Kraken v2.0 send signal

l’ I send a signal to user (\d+) containing " (["\"]x)"

3) Random Events Scenario: Kraken v2.0 provides a
scenario step that allows users to generate GUI-based random
inputs by following the syntax presented in Snippet 0] This
step can execute a given number of random events over the
full screen (line I in Snippet[9) or on a specific region defined
by the user as a portion of the screen (line 2 in Snippet [9).

Snippet 9: Kraken v2.0 random step

(\d+) events
(\d+) events from height
(\d+) &

I start a monkey with
I start a monkey with
and width (\d+)% to

(\d+) &

)

(\d+) % to

4) Kraken Monkey: Kraken v2.0 introduces another
step that also sends and reads signals randomly, in addition to
other input events (e.g., text input, tap, etc.). The structure of
this step is: (\d+) events

5) On-demand snapshot extraction: Kraken v2.0 al-
lows users to extract a GUI snapshot of Android applications
by using a predefined step. This feature can be used by prac-
titioners to understand the UI components hierarchy (along
with its content). The structure of this step is: T save device

snapshot in file with path " (["\"]x*)"

6) Properties file: Kraken v2.0 uses properties files to
store data such as passwords or API keys that should be used in
your test cases. A properties file should be a manually created
JSON file with the structure presented in the following snippet:

I start a kraken monkey with

{
"Quserl": {
"PASSWORD": "test"

}

[CF SRR

Note that the key-value pairs are organized by user tags.
In order to use the values defined in the properties file, the
property should be invoked in a .feature file using “< ... >”
as in the following: I see the text "<PASSWORD>".

Finally, after writing the scenarios, the last step for us-
ing Kraken v2.0 is running it with the kraken-node run
command; it must be called in the folder that contains the
JSeature files. In case the user wants to use a property file,
then the command must include the flag ——properties=<
properties_path>.

B. Fuzzing

Kraken v2.0 offers a fake string generator thanks to the
library FakerJS; the list of supported faker types are: Name,
Number, Email, String, String Date.

Kraken v2.0 keeps a record of every fake string generated;
to this, each string must have an id. To generate a Faker
string you need to follow the structure “$FAKERTYPEs_ID”
as presented in the following example:

2) Read signal: This step can be used in two different ways:
first, to set the expected content (see line 1 in Snippet[8)); and
third, to define the expected content and timeout (see line 2
in Snippet

Snippet 8: Kraken v2.0 wait signal

)"
)" for (\d+)

1 I wait for a signal containing " (["\"]x
2 I wait for a signal containing " (["\"]x seconds

1 Quserl

2 Scenario: As a user

3 Then I enter text "$name_1" into field with id "view"

4 Then I enter text "S$date_1" into field with id "form date"

As mentioned before, Kraken v2. 0 keeps record of every
string generated with an given id, this provides users with the
possibility of reusing this string later in test scenarios. To reuse
a string, the user needs to append a $ character to the fake
string as in line 6 of the following example:

Quserl
Scenario: As a user
Given I wait
Then I enter text "S$name_1" into field with id "view"
Then I press "add_button"
Then I should see "Sname_1"

AU R W —

C. Web Reports

When finishing the execution of the test files, Kraken
v2.0 will generate a directory (in the current folder) that
contains three reports: (i) general report, (ii) execution report
by device, and (iii) execution detail by device.

Source code, examples, more detailed explanations of the
commands, and videos showing Kraken wv2.0 on action are
available at https://bit.ly/30KPFcv.

D. Usage Examples

To show Kraken v2.0 capabilities we created and ex-
ecuted test scenarios for 10 different apps that involved the
interaction of two or more users/applications and also included
web interaction. The capability of the framework to coordinate
the signaling protocol between two or more devices running
the same application is illustrated with (i) social and messaging
applications such as AskFM or Facebook were one user shares
information and then other users can access it; (il) trivia
games such as Kahoot where two or more users compete
by answering a list of questions; and (iii) delivery apps such
as Pibox were a delivery company requests a delivery guy
for sending a package. Finally, we used Kraken v2.0 to
test scenarios that involved the coordination of two or more
services by testing a scenario where one user plays a song
with an audio streaming service app such as Spotify, and then
another user listens to the song and recognizes it with a song
identifier app such as Shazam.

One of the examples is presented as follows: Snippet
presents the steps for a test of an email app from a mobile
app point of view (user 1). From lines 4 to 10, the user
logins into the app, then in line 12 it starts composing and
email, then from line 14 to 16 it fills out the email form, and
finally the form is submitted (line 17). It is worth noticing that
at line 20 the test sends a signal informing to user 2 that
the email was sent.

Complementary, Snippet |11]| presents the steps to check the
email in a browser (user 2). For this, in line 3 the test starts
by visiting the email app home page, then from line 4 to 7
the scenario fills out the login form and enters the app. At this
point, since no signaling related step has been executed yet,
both scenarios will be executed in parallel, nevertheless, in line
8 of Snippet the scenario specifies that user 2 needs to
wait for a signal with the label “email-sent”, which was
sent by user 1 in line 20 of Snippet [I0] This allows the
test execution to understand where it should wait for the other
users. Finally, at line 11 it checks if there is a new email with
the subject used in Snippet

Videos showing scenarios, and testing artifacts for the 10
apps are available at https://bit.ly/3Dz856j.

Snippet 10: Kraken 2.0 mobile scenario for email app

Quserl @mobile

1

2 Scenario: Send email from mobile app

3 Given I wait

4 When I click email input

5 When I enter text "kraken@gmail.com"

6 And I wait

7 And I click password input

8 And I enter text "kraken2020@"

9 And I wait

10 And I click on button with text "Login"

11 And I wait

12 And I click on button with text "Compose"
13 And I wait

14 And I enter text "krakentest2020@gmail.com" into field with

id "destination_email"
15 And I enter text "Kraken test subject" into field with id "
compose_subject_field"

16 And I click on screen 50% from the left and 50% from the top
17 And I enter text "My message"

18 And I press view with id "action_compose_send"

19 And I wait

20 Then I send a signal to user 2 containing "email-sent"

Snippet 11: Kraken 2.0 web scenario for email app

1 Quser2 Q@web

2 Scenario: Check email from browser

3 Given I navigate to page "https://gmail.com"

4 When I enter "krakentest2020@gmail.com" into input field
having id "identifierId"

5 And I click on element having id "identifiedNext"

6 And I enter "kraken2020@" into input field having css

selector "#password > div.aCsJod.oJeWuf > div > div.

Xb9hP > input"

7 And I click on element having id "passwordNext"

8 And I wait for a signal containing "email-sent" for 60
seconds

9 And I navigate to page "https://gmail.com"

10 And I wait for 5 seconds

11 Then I should see text "Kraken test subject"

V. CONCLUSION & FUTURE WORK

We presented Kraken v2.0, the first publicly available
tool for platform-agnostic cross-device interaction-based test-
ing of Android and web apps. Kraken v2.0 allows devel-
opers/testers to write testing scenarios in an E2E fashion for
applications that require interaction of two or more users on
different devices/browsers and between platforms. Kraken
v2.0 also allows developers/testers to combine E2E scenarios
with random generation of events and data. Future work will
be devoted to (i) support the execution of scenarios in iOS
devices, (ii) include a systematic exploration mode to enable
cross-device GUI ripping, and (iii) conduct more experiments
of the tool with practitioners.

REFERENCES

[11 W. Ravelo-Méndez, C. Escobar-Veldsquez, and M. Linares-Vasquez,
“Kraken-mobile: Cross-device interaction-based testing of android
apps,” in ICSME’19.

[2] J. Foundation. Appium. [Online]. Available: http://appium.io/

[3] SeleniumHQ. Selenium. [Online]. Available: |https://www.selenium.dev/

[4] BrowserStack. Browserstack. [Online]. Available: https://www.
browserstack.com

[5] Android. (2019) Espresso. [Online]. Available: https://bit.ly/3FvQcpK

[6] Calabash. (2019) Calabash-android. [Online]. Available: https://github.
com/calabash

[7] Android. (2019) Ui
3DxcSW1

[8] B. J. A. Chow. (2015) Octopus to the rescue: The fascinating world
of inter-app communications at uber engineering. [Online]. Available:
https://eng.uber.com/rescued-by-octopus/

[9] O. foundation. Webdriver.io. [Online]. Available: https://webdriver.io/

[10] Marak. faker.js. [Online]. Available: https://bit.ly/30KyBeX:

automator. [Online]. Available: https:/bit.ly/

https://thesoftwaredesignlab.github.io/Kraken/
https://thesoftwaredesignlab.github.io/Kraken/#examples
http://appium.io/
https://www.selenium.dev/
https://www.browserstack.com
https://www.browserstack.com
https://bit.ly/3FvQcpK
https://github.com/calabash
https://github.com/calabash
https://bit.ly/3DxcSW1
https://bit.ly/3DxcSW1
https://eng.uber.com/rescued-by-octopus/
https://webdriver.io/
https://bit.ly/30KyBeX

	Introduction
	Related Work
	The Kraken v2.0 Tool
	Test Files and Static Analyzer
	Cross-platform Interaction-based Multi-device testing
	Random Data Generation

	Kraken v2.0 in Action
	Console Interface
	Send signal
	Read signal
	Random Events Scenario
	Kraken Monkey
	On-demand snapshot extraction
	Properties file

	Fuzzing
	Web Reports
	Usage Examples

	Conclusion & Future Work
	References

