
MutAPK: Source-Codeless Mutant
Generation for Android Apps

Camilo Escobar-Velásquez, Michael Osorio-Riaño, Mario Linares-Vásquez
Universidad de los Andes, Bogotá, Colombia

{ca.escobar2434, ms.osorio, m.linaresv}@uniandes.edu.co

Abstract—The amount of Android application is having a
tremendous increasing trend, exerting pressure over practitioners
and researchers around application quality, frequent releases,
and quick fixing of bugs. This pressure leads practitioners to
make usage of automated approaches based on using source-
code as input. Nevertheless, third-party services are not able
to use these approaches due to privacy factors. In this paper
we present MutAPK, an open source mutation testing tool that
enables the usage of Android Application Packages (APKs) as
input for this task. MutAPK generates mutants without the need
of having access to source code, because the mutations are done
in an intermediate representation of the code (i.e., SMALI) that
does not require compilation. MutAPK is publicly available at
GitHub: https://bit.ly/2KYvgP9 VIDEO: https://bit.ly/2WOjiyy

Index Terms—Mutation testing, closed-source apps, Android

I. INTRODUCTION

The power and usefulness of a large number of state-of-the-
art approaches for automated software engineering of Android
apps rely on the existence of the source code for extracting
intermediate representations or models that drive the analysis
execution or the artifacts generation.

However, existing approaches that rely on source code for
supporting automated software engineering tasks are untenable
in a commercial environment where practitioners outsource
software engineering tasks, but without releasing the source
code.

One of the automated software engineering tasks that has
got a lot of attention from researchers, at source-code level, is
mutation testing; it consists of modifying an application (by
injecting bugs) with the purpose of enhancing and evaluating
the quality of a test suite that accompanies the application
under analysis. Each injected bug generates a new version of
the application, i.e., a mutant, that represents a potential bug
that should be detected by the existing test suite. Each mutant
differs from the original version in a simple modification,
called mutation. The changes are generated by following a
set of rules (a.k.a., operators); the rules can be specific of
a programming language (e.g., launch an Activity with an
invalid intent) or general to a paradigm as object oriented
programming (e.g., assign a null value to a method parameter).

Using mutation testing generates more reliable results in
terms of test suite quality and completeness than code cover-
age [1]. Most of the existing and publicly available approaches
for mutation testing use source-code as input, which limits the

Acknowledgment. This work is founded by a Google Latin America
Research Award 2018.

applicability of mutation testing to scenarios in which source
code is not available.

The case of Android apps is not an exception, therefore,
in this paper we present MutAPK, an open-source tool that
enables source-codeless mutation testing at APK level. To
create MutAPK we first translated the 38 source-code mu-
tation operations defined by Linares-Vásquez et. al. [2] to
their intermediate representation’s analogous; then, since 3 of
previously mentioned operators did not produced compilable
results, we implemented 35 out of the 38 operators, using
the SMALI intermediate representation; finally, we created a
tool that implements the whole mutation process, including the
generation of APK mutants ready to be installed on Android
devices. MutAPK (to the best of our knowledge), is the most
comprehensive tool for generating mutants of Android apps
at APK level. MutAPK can be downloaded from its public
repository at GitHub https://bit.ly/2KYvgP9.

II. RELATED WORK

Several mutation operators have been proposed for different
types of applications such as web apps [3], data-centric apps
[4], NodeJS packages [5], among many other approaches. For
the case of Java applications, there are representative tools
such as PIT [6] that implements 29 Java mutation operators.
As Android apps are mainly written using Java, approaches for
mutation of Java apps can be used in the context of mobile
apps. However, Android programming strongly differentiate
from Java, which leads to a extensive specialization gap for
Android apps.

Consequently, Linares-Vásquez et. al., [2], [7] created a
taxonomy of Android bugs with the purpose of defining a list
of 38 mutation operators for Android apps. Those operators
were implemented in a tool called MDroid+, which performs
the mutations at source code level. Deng et al. [8], [9] also
presented a set of 8 Android specific mutation operators; the
mutations are oriented to change core components of Android
apps (e.g., intents, event handlers, XML files and activity
lifecycle). Additionally, Luna et al. [10] presented Edroid,
a tool that uses 10 mutation operators oriented to validate
changes in the GUI.

Paiva et al. [11] propose 3 mutation operators aimed at
validating the preservation of user’s data and UI state after
an application has changed from background to foreground.
Jabbarvand et al. [12] implement µDroid a mutation testing
tool oriented to identify energy-related defects. It is worth

https://thesoftwaredesignlab.github.io/MutAPK/
https://thesoftwaredesignlab.github.io/MutAPK/video.html
https://thesoftwaredesignlab.github.io/MutAPK/

noting that the aforementioned approaches work at source code
level and some of them are not publicly available.

muDroid [13] is the only mutation testing tool we found
that works at APK level. However, muDroid implements only
classic mutation operators (i.e., that are not Android specific).
Additionally, MDroid+ authors [2], [7] state that muDroid
generates around 53% of non-compilable mutants, i.e., a lost
of half of the time invested on executing muDroid.

III. MUTAPK

In the following section, we describe MutAPK according to
its workflow described in Fig. 1. MutAPK starts by unpack-
aging an APK into a temporal folder. After that, the Potential
Fault Profile (PFP) [2] is derived and a list of potential fault
injection locations is created. Given the locations from the PFP,
MutAPK generates mutants serially, or using multi-threading
to reduce the mutant generation time. For each location in the
PFP, a copy of the disassembled APK is created. After the
copying ends, the mutation is generated. Finally, a compilation
process is triggered in order to generate an APK.

There is a noticeable difference with the MDroid+ im-
plementation; because in MDroid+ the source code must be
compiled, then the libraries required to compile the source
code must be available. This is not the case of MutAPK,
because we are already working with “compiled” code. Also,
while MDroid+ [7] only generates the source code of the
mutants, MutAPK is able to generate APKs files ready to
install and test in Android devices. In the following paragraphs
we provide details for each step in the MutAPK workflow.

Fig. 1: MutAPK architecture and workflow
1) Unpackaging APK: We use APKTool, which allows us

to process an APK and decode it into a folder with all the
resource files and the source files disassembled into SMALI
files. Code-related files are presented in a file structure that
resembles the one used at source-code level. Having individual
SMALI files, similarly to the original file structure, makes it
easier to perform individual mutations and report the location
of the changes at method level.

2) Derivation of the Potential Fault Profile: We followed
the approach proposed by Linares-Vásquez et al. [2], [7],
which includes extracting a PFP for the app under analysis.
Therefore, we detect mutation locations by first extracting a
PFP and then we implement mutation operations on those

locations. The PFP is a set of code locations that represent
potential points were a fault can be injected. These potential
fault injection points are the starting point for the mutation
operators described in Section III-3.

To extact the PFP, both XML and SMALI files of an app are
statically analyzed searching for instructions that comply with
the characteristics defined in the mutation operators. In the
case of XML files, MutAPK goes through the content of XML
files looking for matches between the file tags and the different
potential fault injection points. For SMALI files the process is
based on the Abstract Syntax Tree (AST). The AST is obtained
using the lexer and parser created by APKTool. In particular,
MutAPK uses the visitor design pattern to identify the potential
mutation locations. Using the visitor pattern MutAPK can be
easily extended to add new operators and to provide more
comprehensive analysis of the app (i.e., resource and SMALI
files) if needed. The final result of the PFP derivation process
is a list that joins the potential fault injection points with the
mutation operators that can be applied to those locations.

3) Operators: We built upon the 38 operators proposed by
Linares-Vásquez et al. [2], [7], which are representative of po-
tential fault in Android apps and can be found either on source
code statements, XML tags, or locations in other resource files.
In MutAPK we implemented (i) the 33 operators implemented
in MDroid+ that do not lead to compilation errors, and (ii) two
additional operators not available in MDroid+.

To reuse the MDroid+ operators, we translated their im-
plementation from the original source code-based rules to the
corresponding implementations in the SMALI representation.
The correctness of the implementation rules at SMALI level
was manually validated on a set of 11 Android apps with PFPs
leading to potential locations for implementing the mutation
operators. The apps were selected from the dataset of 54 apps
used by MDroid+ [2], [7]. For the 11 apps, we built the APKs
and disassembled manually each one to recognize the direct
translation of each mutation performed by MutAPK. We also
manually mutated the source code of these 11 applications
to generate a second set of APKs. A third set of APKs
was created by generating mutants at source code level using
MDroid+. Finally we performed a diff comparison between
the SMALI representation of the three sets of APKs. Because
of this, we were able to translate successfully each mutation
operator from source code to SMALI representation. With this
procedure we derived the list of operators implementation at
APK level; the details of each operator are available with our
online appendix [14].

4) Mutants Creation: In order to generate the mutants,
MutAPK uses a set of processors that are associated to
one or more mutation operators. The processors understand
the location listed in the PFP and are able to modify the
file that contains the PFP’s location; the changes done by
the processors are based on the mutation rules at SMALI
level. Therefore, MutAPK generates a copy of the decoded
application for each location in the PFP that will host one and
only one mutation.

5) Repackaging and signing: At the end of the generation
of each mutant, MutAPK uses again the APKTool to package
the mutated copy of the app into a valid APK. However, when
APKTool builds the APK it loses the signature provided by
the developer. Therefore, MutAPK uses the Uber APK Signer
[15] library to resign the APK. This resigning is required to
have APKs that are installable on Android devices/emulators.

6) Extensibility: Due to the fast change of the Android
framework, MutAPK must provide the possibility of adding
new mutation operators easily. Therefore, in order to enable a
new mutation operator, some changes must be implemented:
(i) create a new detector/locator that is capable of finding the
correct position that provides all the information needed to
create a Mutation Location defined in MutAPK; (ii) a mutator,
that is capable of using the previously identified location
information to mutate the code’s SMALI representation or
resource file; (iii) update the operator-types.properties file
found under the ”src/uniandes/tsdl/mutapk” folder to add the
new mutation operator file path with its defined id; (iv)
modify OperatorBundle.java (in case the new operator is
text-based) to add the new text detector; and (v) update the
operators.properties file.

It is worth noting that MutAPK has an extra folder where
the external libraries are located. Therefore, if a user wants to
improve the file analysis process or wants to execute a more
specialized process over an APK, she can locate the library
files in this folder and manage them easily.

IV. MUTAPK ON ACTION

MutAPK has been designed to work as a command line tool.
It requires Maven and Java to be installed on the machine that
executes MutAPK. To start the usage, the MutAPK repository
[14] must be cloned and then packaged using the following
commands:

git clone https://github.com/TheSoftwareDesignLab/
MutAPK.git

mvn clean
mvn package

After that, a .jar file will be generated in the target folder.
After the building process, the MutAPK jar can be moved
to another location. To run MutAPK the following command
must be executed (in a command line console):

java -jar MutAPK-<version>.jar <APKPath> <AppPackage>
<OutputFolder> <ExtraComponentFolder>
<operatorsDir> <multithread> <amountOfMutants>?

The description of the parameters in the MutAPK command
is the following:

1) <APKPath>: path to the app’s APK
2) <APKPackage>: app package name used to identify the

Android app
3) <OutputFolder>: path to the folder where all the mu-

tants will be generated
4) <ExtraComponentFolder>: path to the folder that has

the extra libraries used by MutAPK
5) <operatorsDir>: path to the operators.properties folder,

that describes the operators to be used during the mutation

6) <multithread>: boolean value, defines if MutAPK must
be executed using multiple threads

7) <amountOfMutants>: positive number, in case of been
provided, it defines the amount of mutants that MutAPK
will generate. It is an optional argument

When the command is executed in the console, the selected
operators and the amount of mutants that are going to be
generated for each operator are logged, along with messages
that notify the state of the mutation process, as it is presented
in following snippet:

Amount Mutants Mutation Operator
1 OOM_LARGE_IMAGE
3 NULL_INTENT
5 NULL_OUTPUT_STREAM
1 INVALID_FILE_PATH
5 INVALID_LABEL
19 NULL_VALUE_INTENT_PUT_EXTRA
7 INVALID_COLOR
9 FINDVIEWBYID_RETURNS_NULL
19 INVALID_KEY_INTENT_PUT_EXTRA
5 LENGTHY_GUI_CREATION
8 VIEW_COMPONENT_NOT_VISIBLE
3 NULL_INPUT_STREAM
0 SDK_VERSION
7 INVALID_ACTIVITY_PATH
8 INVALID_VIEW_FOCUS
2 CLOSING_NULL_CURSOR
39 WRONG_STRING_RESOURCE
3 WRONG_MAIN_ACTIVITY
1072 NULL_METHOD_CALL_ARGUMENT
4 NULL_BACKEND_SERVICE_RETURN
2 LENGTHY_GUI_LISTENER
9 INVALID_ID_FINDVIEW
7 ACTIVITY_NOT_DEFINED
5 MISSING_PERMISSION_MANIFEST
2 LENGTHY_BACKEND_SERVICE
3 DIFFERENT_ACTIVITY_INTENT_DEFINITION
Total Locations: 1248
Mutant: 1 - LenghtyGUICreation
Creating folder for mutant 1
Copying app information into mutant 1 folder
Mutant: 2 - LenghtyGUICreation
Creating folder for mutant 2
Mutant 1 has survived the mutation process. Now its

source code has been modified.
Building mutant 1 ...
Copying app information into mutant 1 folder
Mutant: 3 - LenghtyGUICreation
Creating folder for mutant 3
SUCESS: The 1 mutant’s APK has been generated
Copying app information into mutant 1 folder
Mutant 2 has survived the mutation process. Now its

source code has been modified.
Building mutant 2 ...
ERROR: The 2 mutant’s APK has not been generated
.........

<packageName>/

<packageName>-mutant1/

<packageName>.apk

<packageName>-aligned-debugSigned.apk

(*.smali|*.xml)

<packageName>-mutant2/

src/

(*.smali|*.xml)

...........

<packageName>-locations.json

<packageName>-mutants.log

<packageName>-times.csv

Fig. 2: MutAPK result’s folder structure

When MutAPK execution ends, it stores in the folder
defined as <OutputFolder> a set of directories and files that

follow the structure depicted in Fig. 2. The result consist
of three files and a folder for each generated mutant. First,
the content of the mutants folders depends on the result of
the building+signing process. Due to nature of the mutation
operators, some mutants might not compile. Thus, in case the
process is executed successfully a mutant folder will have (see
green lines in Fig. 2): (i) an unsigned APK, in case the user
wants to sign it with different keyset, (ii) a signed APK, ready
to be installed and tested, and (iii) a copy of the mutated file
(i.e., .smali or .xml). If the mutant is not successfully generated
the resulting folder will have (see red lines in Fig. 2): (i) a
source folder with XML and SMALI files, in case the user
wants to run apktool build process and identify what was the
specific error, and (ii) the mutated file.
MutAPK also creates a log file that allows testers to identify

what was the mutation applied on each mutant. Snippet 1
shows an example of the log; the first line shows the amount
of threads that were used with the MutAPK execution. The
remaining lines show the general information related to a
mutant; lines 2, 4 and 6, present the file path, the mutation
operator and line number where the mutation was injected;
lines 3, 5 and 7 present a textual description of the mutation
effect over the app.

Snippet 1: Example of a mutation log for the PhotoStream app

1 ThreadPool: 8
2 Mutant 1: com/butacapremium/play/activity/LoginActivity

.smali; LengthyGUICreation in line { 459 }
3 For mutant 1 a large delay has been injected after GUI

Creation at line 459
4 Mutant 2: /com/butacapremium/play/activity/LoadActivity

.smali; LengthyGUICreation in line { 2328 }
5 For mutant 2 a large delay has been injected after GUI

Creation at line 2328
6 Mutant 3: /com/butacapremium/play/activity/

SplashActivity.smali; LengthyGUICreation in line {
343 }

7 For mutant 3 a large delay has been injected after GUI
Creation at line 343

A JSON file is generated as a representation of the location
found in the PFP. Therefore, for each location it presents
information about the applied mutation operator and mutation
location (i.e., starting and ending line numbers, starting col-
umn number, length and file path). A detailed report of mutant
generation times is stored in a .csv file, where copying times,
mutation times and building+signing times are shown for each
mutant.

Finally, MutAPK also allows users to generate a specific
amount of mutants by its parameter amountOfMutants. When
a user provides this parameter, MutAPK selects at least one
mutant per mutation operator.

V. MUTAPK USAGE EXAMPLES

In order to validate the feasibility of using MutAPK on
closed-sourced apps, we executed it with two apps from
the Google Play top-list: Play! and Tasker Settings. We
downloaded both apks and ran MutAPK on a server with 16GB
RAM and Intel Core i7 Processor. In both cases, MutAPK
was able to generate APK mutants ready to be installed, and
without having access to the original source code.

For Play! (4.1MB), MutAPK generated 5346 mutants dis-
tributed in 20 different mutation operators (8 text-based and
12 code-related). From the generated mutants, 5323 were
successfully compiled and the average time for mutation was
416.8 milliseconds, while the average building+signing time
was 3.1 minutes.

For Tasker Settings (1.06MB), 289 mutants were generated
within 11 mutation operators (8 text-based and 3 core-related).
From the generated mutants 263 were successfully compiled
and the average time for mutation was 5.05 miliseconds, while
the average building+signing time was 20 seconds.

Note that we did not use the existing tools (i.e., MDroid+
and muDroid) with the two apps, because MDroid+ requires
the app source code for the mutations, and muDroid imple-
ments classic operators (which does not allow for a compari-
son to MutAPK).

VI. CONCLUSION & FUTURE WORK

With the purpose of enabling mutation testing of An-
droid apps without having access to source code, we created
MutAPK, an open source tool written in Java that is publicly
available at GitHub. As part of the future work, we will extend
MutAPK to be a complete mutation testing tool, i.e., it also
runs existing tests to compute mutation score and suggest
developers/testers how to improve their test suites. Another
desirable feature in MutAPK is to include different mutant
selection techniques; current version of MutAPK only allow
users to set the number of mutants to be generated, which is
a trivial technique for mutant selection.

REFERENCES

[1] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” ser. ICSE 2014, 2014, pp. 435–445.

[2] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,
C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk, “Enabling muta-
tion testing for android apps,” in ESEC/FSE’17, 2017, pp. 233–244.

[3] U. Praphamontripong, J. Offutt, L. Deng, and J. Gu, “An experimental
evaluation of web mutation operators,” in ICSTW 2016. IEEE, 2016.

[4] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated
testing for sql injection vulnerabilities: an input mutation approach,” in
ISSTA 2014. ACM, 2014.

[5] D. Rodrı́guez-Baquero and M. Linares-Vásquez, “Mutode: generic
javascript and node.js mutation testing tool,” in ISSTA 2018. ACM.

[6] H. Coles, “Pit. http://pitest.org/,” 2017.
[7] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. Linares-Vásquez,

G. Bavota, C. Vendome, M. Di Penta, and D. Poshyvanyk, “Mdroid+:
A mutation testing framework for android,” ser. ICSE ’18, 2018.

[8] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt, “Towards mutation
analysis of android apps,” in ICSTW 2015. IEEE, 2015.

[9] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators for
testing android apps,” Information and Software Technology, vol. 81, pp.
154–168, 2017.

[10] E. Luna and O. El Ariss, “Edroid: A mutation tool for android apps,”
in CONISOFT 2018. IEEE, 2018.

[11] A. C. Paiva, J. M. Gouveia, J.-D. Elizabeth, and M. E. Delamaro,
“Testing when mobile apps go to background and come back to
foreground,” in ICSTW 2019. IEEE, 2019.

[12] R. Jabbarvand and S. Malek, “miudroid: An energy-aware mutation
testing framework for android,” ser. ESEC/FSE 2017. New York, NY,
USA: ACM, 2017, pp. 208–219.

[13] Yuan-W, “mudroid project at github,” 2017, https://goo.gl/sQo6EL.
[14] “Mutapk. https://github.com/TheSoftwareDesignLab/MutAPK.”
[15] “Uber apk signer. https://github.com/patrickfav/uber-apk-signer.”

http://pitest.org/
https://goo.gl/sQo6EL
https://github.com/TheSoftwareDesignLab/MutAPK
https://github.com/patrickfav/uber-apk-signer

	Introduction
	Related Work
	MutAPK
	Unpackaging APK
	Derivation of the Potential Fault Profile
	Operators
	Mutants Creation
	Repackaging and signing
	Extensibility

	MutAPK on Action
	MutAPK Usage Examples
	Conclusion & Future Work
	References

