
OPIA: A Tool for On-Device Testing of
Vulnerabilities in Android Applications

Laura Bello-Jiménez1, Alejandro Mazuera-Rozo2,1, Mario Linares-Vásquez1, Gabriele Bavota2

1Universidad de los Andes, Bogotá, Colombia
2Università della Svizzera italiana, Lugano, Switzerland

ln.bello10@uniandes.edu.co, alejandro.mazuera.rozo@usi.ch, m.linaresv@uniandes.edu.co, gabriele.bavota@usi.ch

Abstract—Mobile developers constantly have to deal with users
pressure for continuous delivery of apps while keeping quality
attributes such as confidentiality and data integrity. To better
support developers in testing security vulnerabilities during
evolution and maintenance of mobile apps, in this demo we
present a novel tool, OPIA, for on-device security testing. OPIA
allows developers/testers to (i) conduct SQL-injection attacks and
collect logs to identify leaks of sensitive information through
record-and-replay testing, and (ii) extract data stored in local
databases and shared preferences to identify sensitive information
that is not properly encrypted, anonymized. OPIA is publicly
available at GitHub. Videos list: https://tinyurl.com/y379oror
Website: http://tiny.cc/1pah8y

Index Terms—Android; security; testing; confidentiality

I. INTRODUCTION

Mobile apps and devices support humans daily activities,
and have even become personal vaults where their private
information is stored directly by them or by apps that want to
offer offline features. By 2018, 74.45% of smartphone users
had Android [1] and each of these users open, on average, 9
apps per day [2]. The official Google App Store counts 2.6M
apps [3] with more than 20 Billions of downloads [4].

Testing apps is a challenging task due to aspects such as
fragmentation at operating system and device levels. While
significant progress has been made in the area of security test-
ing, the available tools suffer of some noteworthy limitations:
(i) previous approaches mostly rely on static analysis, which
is a time-expensive, resource-expensive and false-positives
prone technique; (ii) most approaches are focused only on
finding vulnerabilities that are not related to the local storage
of private data, for instance, overprivileged access, insecure
statements and lack of input validation on inter-component
communication; and (iii) some approaches care about avail-
ability, avoiding crashes. In summary, few approaches focus
on dynamic analysis and in particular on caring about keeping
user’s data safe and immutable.

Motivated by the aforementioned limitations, the amount
of sensitive information that users and apps store in their
smartphones, and the growing amount of android apps, we
designed and implemented OPIA, a practical tool that helps
developers to dynamically test and discover security vulner-
abilities in Android applications (e.g., exposure of sensitive

Linares-Vásquez was partially supported by a Google Latin American
Research Award 2018.

data and insertion or alteration of data without authorization)
directly on their device.
OPIA replays the behavior of a user (previously recorded)

and manipulates user inputs in order to inject malign SQL
strings, pulls out the logs printed on the console by the
developer, and extracts data stored in database tables and
shared preferences (i.e., data that is saved locally in a key-
value format) saved on the phone without proper encryption.
The SQL injection and on-device data extraction are aimed at
testing data integrity and confidentiality, and app availability.
The OPIA workflow is semi-automated since it only needs
the developer to record the execution scenarios and to check
whether there is private information leaked on the logs or
unencrypted sensitive data in the local storage.

To make OPIA an easy to use tool, we developed a
distributed architecture composed of an Android-Java mobile
app, a Python server and a NoSQL database. With the OPIA
mobile app, a user can select the app to be tested in order
to record and replay user’s behavior. OPIA includes an Ex-
ecution Engine which extracts unencrypted information from
databases, shared preferences and logs; a front-end module is
also provided to display the retrieved data. This architecture
is designed to achieve horizontal scalability and flexibility.

II. THE OPIA TESTING TOOL

OPIA overcomes the limitations of existing tools to test
Android applications in several ways: (i) OPIA is able to
detect and test vulnerabilities dynamically; (ii) the approach
is not only focused on testing availability but confidentiality
and integrity as well; (iii) the tool is app-crash resilient, i.e.,
if there is a crash on the app under test, OPIA restarts it and
continues the execution; (iv) to operate, OPIA only requires
the app to be installed on a device (i.e., no code is required).
OPIA’s target base population is app developers who wish

to keep user’s data safe by finding security leaks before
releasing their apps after evolution/maintenance tasks. From
a developer’s perspective, the OPIA’s workflow is simple;
because OPIA uses accessibility services, then it must be
enabled in the device via the Android settings app. Then, the
app under test must be selected on the OPIA app. Once the
application is selected, OPIA records actions and enables the
options to replay, inject, extract data and display its findings.

https://tinyurl.com/y379oror
http://tiny.cc/1pah8y


A. OPIA Architecture

OPIA’s architecture is outlined in Figure 1. OPIA has three
main components: (i) User Interface (UI) implemented as a
mobile app, (ii) an Execution Engine (EE) that executes ADB
commands, and (iii) a NoSQL database hosted at Firebase.
The OPIA’s architecture has been designed with the following
design principles in mind:
• Data privacy: neither the UI nor the EE should store

any information of the executions or extracted data after
completing the workflow;

• Horizontal scalability: achieved through a central server
able to communicate with many OPIA UIs running on
different devices;

• Maintenance: by keeping functionalities and responsibili-
ties distributed between the UI, EE and NoSQL database.

firebase client

http

OPIA Java Mobile
App

Accessibility
Service

Data Access
(firebase client,
HTTP REST )

Firestore
database

firebase client

json

Python Web App
(Execution Engine)

Data extractor

Log Extractor

Fig. 1: Architecture of the OPIA tool.

We decided to use a “Call-Return” architectural style to
achieve the consumption of centralized resources by the UI
from the EE keeping the possibility of horizontal scalability.
We used a Python Server as the Execution Engine, which
contains a set of features that can be requested from the phone
in which the OPIA UI is installed. The Call-Return style
allows easy addition of new clients which can communicate
with the EE. Also, the EE provides a REST-based interface
that allows the OPIA UI to request the execution of a given
feature at the EE.

B. The OPIA Mobile Application (UI)

The goal of the UI is to give the users the possibility of: (i)
observe and reproduce user’s actions in GUI Components, (ii)
request the execution of OPIA tasks in the EE to extract tables,
shared preferences and logs, and (iii) execute SQLi attacks.
OPIA records three type of user actions: (i) view text changed,
which recognizes when the content of an EditText changes,
such as character addition, deletion, cropping and pasting;
(ii) view clicked, identifies when a view, such as Button,
RadioButton, CheckBox, etc, is touched; (iii) view scrolled,
which notices when a scrollable view is scrolled. The events
are saved in the NoSQL database with information related to
the executed GUI components such as package name, type,
location, execution time, among other information.

The sequence of recorded events are saved on Firebase
as documents in a collection. Then, to replay a previous
execution, the OPIA UI queries the database for the cor-
responding sequence of events. For each event it searches

the GUI Component based on classname, text and bounds
in parent/screen and performs the action specified on the
event (text, scroll, click). Once the action is performed on the
device, the UI sends a HTTP request to the EE, requesting
to extract the log of the application under analysis. Also, the
UI communicates with the EE to extract the database tables
and shared preferences used by the app, in order to later
execute (on demand) SQLi attacks by replacing text events
with malicious inputs, such as drop statements to delete tables
from the database and malformed queries to bypass login or
crash the application under analysis.

C. The OPIA Execution Engine (EE)

The Execution Engine is in charge of executing Android
Debug Bridge (ADB) commands remotely and processing
the outputs. In particular, the EE: (i) extracts a backup of
the mobile app to retrieve tables and shared preferences; (ii)
retrieves, filters and clears the logcat during the execution of
a sequence of events; (iii) saves the extracted information in
the NoSQL database; (iv) displays extracted information in a
browser that can be accessed directly on the device; and (v)
restarts the application under analysis when it crashes.

The EE runs on a local server (outside of the device)
that receives requests from the OPIA UI. When the request
is related to extract tables, the EE gets the name of the
package and executes the command adb backup -noapk
package-name to get a backup of the application as a
backup.ab file. It is worth noting that, if the application
under analysis has its data encrypted, the EE cannot extract
the backup to a local folder. Later, the EE searches for two
important folders: (i) /db/ which contains all the databases as
.db files; (ii) /sp/ which contains all the Shared Preferences as
.xml files. Next, the EE saves all extracted data in the NoSQL
database and the developer can see them on a browser. To do
this, the EE gets and parses the values to create a HTML file
displaying the database tables and shared preferences.

The EE is also in charge of retrieving the Android logcat
during the execution of a sequence of events. First, the EE
finds the number of the process of the analyzed application
and filters the logcat to get only the lines related to the
application. Once the EE acquires the log, it looks only for
lines with application logs, i.e., the ones a developer prints
during development time, such as: System.out.print,
Log.d, Log.i, Log.w, Log.v and Log.e. Afterwards,
OPIA checks if the current activity is an ‘Application Error’
activity, that means that the application has crashed and the
standard Android crash dialog has appeared. If a crash is
encountered, the EE replies that an error occurred and executes
adb shell am force-stop package-name to stop
the application and restart it in order to continue with the
workflow. OPIA preserves the log of each execution to display
it to the developer as a HTML table, so the developer can
check if private/sensitive information is leaked in the logcat.



III. OPIA IN ACTION

After installing OPIA in a device and starting the EE on a
server, a user can (i) select an app to analyze, (ii) record actions
executed on an application to be analyzed, (iii) see a list of
previous records, (iv) replay previous executions, (v) see the
log of previous replays, (vi) extract and visualize tables and
shared preferences (SP) or (vii) execute a SQLi attack with an
existing execution record.

The workflow starts with the record and replay (R&R)
feature. Thus, the first step to use OPIA is to record a sequence
of actions (executed on the app by the developer) through the
‘Record’ button, which starts the application under analysis.
Next, the accessibility service detects the exercised GUI com-
ponent events (e.g., click-event, text entry, scroll, keyevent)
and saves them on the NoSQL Database (i.e., Firebase). To
stop the recording, the developer presses a button on the top
to return to OPIA’s UI. For each application there is a list of
previous records with the possibility of replay a sequence of
recorded events and show the corresponding log (Figure 2 -
middle). For example, the list of previous records in Figure 2
shows that the user has recorded four execution scenarios for
the Gmail app.

Fig. 2: Screenshots of the OPIA UI: List of apps (left), records of a
given app (center), and options to check local data and SQLi (right).

To replay previous records, the OPIA UI gets from Firebase
the sequence of events and parses them to find the GUI
components involved in the events. Then, the accessibility
service performs the action on the component, gets the log and
saves it on the NoSQL database. When the execution finishes,
the UI is opened again to give the developer the possibility to
perform another action on the app under analysis.

R&R is the most important feature of OPIA because it is
the foundation for extracting information and executing SQLi
attacks dynamically. R&R allows to execute scenarios without
dealing with automatic detection of GUIs that require login
and automatic generation of authentication data. An example
of the R&R feature can be seen in the following video: https:
//youtu.be/ygoFKBxLITM.

The workflow continues with the Information Exposure
feature. The OPIA UI also shows (as a HTML table) the
log printed during the execution of a scenario (Figure 3). For
example, when checking the log of Gmail, there was no extra
data printed in console. However, the browser in Figure 3

displays the log after replaying a record of Uber: It is possible
to see that the developer is leaking some information about
Payment methods and the device in which the app is running.
Leaving information printed in console is dangerous because
some of it could be sensitive and attackers could steal it.

Fig. 3: OPIA’s log for the Uber app.

Besides, after an execution is recorded, a user can check
data integrity by extracting database and SP information from
the device. The OPIA UI displays two buttons (‘Show tables’
and ‘Show shared preferences’) in which the developer can list
unencrypted information stored on the tables and SP. Once
those values are saved in Firebase, the developer can see
them on a browser. To do this, the EE gets the values, parses
them and creates a HTML file displaying the tables and SP
as HTML tables. Getting database/SP data allows the user to
first check if there is unencrypted data in both database and
SP. This is due to the fact unencrypted data stored on devices
can be easily exposed by using Android SDK utilities, which
attacks confidentiality and privacy. Thus, it is a developer’s
duty to examine which data must be stored in a secure way
and handle it to maintain privacy as much as possible. With
OPIA, a developer can easily identify unencrypted data.

Figure 4 depicts the results of a real execution of OPIA for
the Gmail app, showing some tables that were stored locally
without proper encryption. For example, suggestions, which
displays information about recent searches and item-message-
attachments, which stores paths to files attached and sent.
This information could be used by an attacker to learn users
behavior and even stole attached files using the leaked paths.

Fig. 4: Browser of OPIA’s tables for Gmail app.

Figure 5 depicts the results of requesting the Shared Pref-
erences for the Gmail app, showing some of the configuration
settings and user information (e.g., telephone numbers).

Another example of app that does not encrypt its data is
Narrate, which stores notes in plain text and saves latitude
and longitude where the app was used (see https://youtu.be/
bh8nb3u RAY). However, there are some applications that

https://youtu.be/ygoFKBxLITM
https://youtu.be/ygoFKBxLITM
https://youtu.be/bh8nb3u_RAY
https://youtu.be/bh8nb3u_RAY


Fig. 5: Browser of OPIA’s shared preferences for Gmail app.

encrypt their backup, thus, OPIA can not collect the data,
e.g., K-9 Mail (https://youtu.be/h0GM-GvoRck).

The workflow finishes by executing SQLi attacks using
previous records and the tables’ name extracted by OPIA. To
this, the user should select a previous record to inject and the
accessibility service systematically executes three times the
sequence of events changing user’s text inputs with injection
strings generated randomly but using the schema information
(i.e., attributes and tables). During the execution, after each
event, the EE checks the current activity and, if there is a
crash, the EE notifies the OPIA UI and restarts the application
to continue with the execution. The rationale for including
the injection feature is because SQLi attacks the integrity of
an app dynamically. If developers do not check properly the
inputs or use concatenation instead of prepared statements,
the information stored in the databases will be lost. Also, the
app could crash and the app availability will be impacted (see
https://youtu.be/jkB5EUIwbWQ). Results of using OPIA with
different apps are in the online appendix: http://tiny.cc/1k1y9y

IV. RELATED WORK

When evolving and maintaining software, security testing
is a critical activity to identify vulnerabilities. This process is
accomplished by stressing programs concerning their security
features. However, this task is highly expensive given the mod-
ern systems. Therefore, the research community has focused
its efforts on automating security testing by engineering testing
tools on mobile apps. For example, there are several proposals
[5]–[8] for automatically detecting security flaws by analyzing
code or intermediate representations statically.

Facebook Infer [5] is a well-known static code analysis tool
which checks (in Android and Java code) for several vulner-
abilities such as null pointer exceptions and resource leaks,
among others. Stowaway [8] analyzes an Android app and
determines the maximum set of permissions it may require,
thus identifying the prevalence of over privilege issues.

Other tools are focused on testing, as in the case of Monkey
[9], which is in fact the current industry standard tool that
generates purely random inputs to stress-test applications.

It is worth noting that focusing only on source code can lead
to unrealistic test cases, thus there are several approaches [9]–
[12] that rely on combining static and dynamic techniques. For
instance, LetterBomb [10] identifies and exploits vulnerabili-
ties, relying on a combined path-sensitive symbolic execution-
based static analysis and the use of instrumentation tests.
Another tool is ODBR [13]; this is the closest tool to OPIA in
terms of on-device data collection. ODBR supports app testers
and developers in the process of On-Device Bug Reporting,
being capable of collecting fine-grained user inputs and GUI
information with the aim of creating a report conveying
actionable and functional bugs.

Most of the aforementioned tools only are prone to false
positives or rely on resource and time expensive techniques.
Our tool differs from them since OPIA is focused on dynam-
ically detecting and testing vulnerabilities, specifically those
concerning SQLi and Information exposure.

V. DEMO REMARKS AND FUTURE WORK

We presented OPIA, an on-device tool for detecting and
testing security vulnerabilities in Android apps such as infor-
mation exposure and lack of SQLi filters. OPIA can be used
by developers to assure that new releases of an Android app do
not suffer of those security issues before being uploaded to a
market. Future work will be devoted to include other types of
malicious attacks such as boundary values, activity injection,
and data leaking/injection via intents. OPIA code is publicly
available (http://tiny.cc/wn1y9y and http://tiny.cc/uo1y9y).

REFERENCES

[1] Mobile Operating System Market Share Worldwide. http://gs.
statcounter.com/os-market-share/mobile/worldwide. [Online; accessed
10-February-2019].

[2] Report: Smartphone owners are using 9 apps per day, 30
per month. https://techcrunch.com/2017/05/04/report-smartphone-
owners-are-using-9-apps-per-day-30-per-month/. [Online; accessed 9-
February-2019].

[3] Google Play Store: Number of apps 2018. https://www.statista.com/
statistics/266210/number-of-available-applications-in-the-google-play-
store/. [Online; accessed 9-February-2019].

[4] Global App Downloads Grew 15Ago — App Annie Blog. https:
//www.appannie.com/en/insights/market-data/global-app-downloads-
grew-15-and-consumer-spend-20-in-q2-2018-versus-a-year-ago/.
[Online; accessed 9-February-2019].

[5] Facebook Infer. https://fbinfer.com/. [Online; accessed 6-June-2019].
[6] J. Garcia H. Bagheri, A. Sadeghi and S. Malek. Covert: Compositional

analysis of android inter-app permission leakage. IEEE TSE, 2015.
[7] N. Mirzaei R. Mahmood and S. Malek. Evodroid: Segmented evolu-

tionary testing of android apps. In ACM SIGSOFT FSE, 2014.
[8] S. Hanna D. Song A. P. Felt, E. Chin and D. Wagner. Android

permissions demystified. In ACM CCS, 2011.
[9] Monkey. https://developer.android.com/studio/test/monkey. [Online;

accessed 6-June-2019].
[10] N. Ghorbani J. Garcia, M. Hammad and S. Malek. Automatic generation

of inter-component communication exploits for android applications. In
ESEC/FSE, 2017.

[11] N. Ghorbani H. Bagheri A. Sadeghi, R. Jabbarvand and S. Malek. A
temporal permission analysis and enforcement framework for android.
In ICSE, 2018.

[12] P. Liu C. Cao, N. Gao and J. Xiang. Towards analyzing the input
validation vulnerabilities associated with android system services. In
ACSAC, 2015.

[13] C. Bernal-Cardenas B. Otten D. Park K. Moran, R. Bonett and
D. Poshyvanyk. On-device bug reporting for android applications. In
MOBILESoft, 2017.

https://youtu.be/h0GM-GvoRck
https://youtu.be/jkB5EUIwbWQ
http://tiny.cc/1k1y9y
http://tiny.cc/wn1y9y
http://tiny.cc/uo1y9y
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.appannie.com/en/insights/market-data/global-app-downloads-grew-15-and-consumer-spend-20-in-q2-2018-versus-a-year-ago/
https://www.appannie.com/en/insights/market-data/global-app-downloads-grew-15-and-consumer-spend-20-in-q2-2018-versus-a-year-ago/
https://www.appannie.com/en/insights/market-data/global-app-downloads-grew-15-and-consumer-spend-20-in-q2-2018-versus-a-year-ago/
https://fbinfer.com/
https://developer.android.com/studio/test/monkey

	Introduction
	The Opia testing tool
	OPIA Architecture
	The OPIA Mobile Application (UI)
	The OPIA Execution Engine (EE)

	OPIA in Action
	Related Work
	Demo Remarks and Future Work
	References

